Pressure-driven structural transition in CoNi-based multi-principal element alloys

材料科学 相变 格子(音乐) 堆积 叠加断层 衍射 凝聚态物理 成核 位错 热力学 复合材料 核磁共振 光学 物理 声学
作者
R. Li,Pengfei Yu,Hao Yang,Minhua Jiang,S.B. Yu,Chao Huo,Xingshuo Liu,G. Li
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:123 (5)
标识
DOI:10.1063/5.0155011
摘要

Pressure-driven phase transition in metals has been a hot topic because it is an effective means to induce fresh phase, benefit of tuning the properties of materials. Herein, CoNiFe, CoNiCr, and CoNiV multi-principal element alloys (MPEAs) were investigated by an in situ high-pressure x-ray diffraction technique. It is found that the pressure-induced phase transition from face-centered cubic to hexagonal close-packed phase occurs at 15.60, 13.84, and 8.20 GPa, respectively. The atomic size misfit of CoNiFe, CoNiCr, and CoNiV MPEAs is estimated to be 0.653%, 2.077%, and 3.013%, respectively, illustrating that the lattice distortion degree is increasing. The increase in lattice distortion can decrease the initial phase-transition-pressure because lattice distortion could reduce the strain to nucleate Shockley partial dislocation, which promotes the formation of a stacking fault (SF) stack of three atomic layers with hcp stacking. However, the quantitative calculation of stacking fault probability α as a function of pressure demonstrates that the probability of SF formation gradually increases in order of CoNiFe, CoNiCr, and CoNiV, which is in line with the critical pressure of phase transition decreasing orderly. Furthermore, the first peak in the pair distribution function curve after entirely decompression not fully reverts to its initial state, proving the densification of MPEAs under pressure. These findings provide an innovative light for understanding pressure-induced phase transitions in MPEAs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
honda完成签到,获得积分10
2秒前
yeayeayea完成签到,获得积分10
2秒前
Advance.Cheng发布了新的文献求助10
2秒前
喷喷发布了新的文献求助10
3秒前
谷粱紫槐发布了新的文献求助10
8秒前
8秒前
爱听歌的梦易完成签到 ,获得积分10
8秒前
9秒前
10秒前
Michelle关注了科研通微信公众号
11秒前
Mahna发布了新的文献求助30
14秒前
hihi发布了新的文献求助10
17秒前
了了发布了新的文献求助10
17秒前
科研通AI5应助喷喷采纳,获得10
17秒前
fd163c应助judy采纳,获得10
18秒前
家家完成签到 ,获得积分10
20秒前
默默海瑶完成签到,获得积分10
20秒前
情怀应助章鱼采纳,获得10
21秒前
共享精神应助Franky采纳,获得10
21秒前
22秒前
24秒前
ho发布了新的文献求助30
24秒前
25秒前
26秒前
lily发布了新的文献求助10
27秒前
27秒前
Michelle发布了新的文献求助10
28秒前
李健应助飞宇采纳,获得10
29秒前
29秒前
FUTURE发布了新的文献求助30
30秒前
30秒前
慕青应助zyj采纳,获得10
31秒前
31秒前
fairy发布了新的文献求助10
32秒前
一一完成签到 ,获得积分10
34秒前
CodeCraft应助lily采纳,获得10
34秒前
shenjy发布了新的文献求助30
35秒前
Franky发布了新的文献求助10
38秒前
39秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735916
求助须知:如何正确求助?哪些是违规求助? 3279635
关于积分的说明 10016487
捐赠科研通 2996335
什么是DOI,文献DOI怎么找? 1644022
邀请新用户注册赠送积分活动 781721
科研通“疑难数据库(出版商)”最低求助积分说明 749425