色散(光学)
色散关系
反向
波包
物理
电子能带结构
凝聚态物理
材料科学
计算物理学
光学
量子力学
几何学
数学
作者
Arash Kazemi,Kshiteej J. Deshmukh,Fei Chen,Yunya Liu,Bingyao Deng,Henry Fu,Pai Wang
标识
DOI:10.1103/physrevlett.131.176101
摘要
Dispersion relations govern wave behaviors, and tailoring them is a grand challenge in wave manipulation. We demonstrate the inverse design of phononic dispersion using nonlocal interactions on one-dimensional spring-mass chains. For both single-band and double-band cases, we can achieve any valid dispersion curves with analytical precision. We further employ our method to design phononic crystals with multiple ordinary (roton or maxon) and higher-order (undulation) critical points and investigate their wave packet dynamics.
科研通智能强力驱动
Strongly Powered by AbleSci AI