Enhanced variants of crow search algorithm boosted with cooperative based island model for global optimization

早熟收敛 水准点(测量) 计算机科学 局部最优 局部搜索(优化) 人口 趋同(经济学) 锦标赛选拔 数学优化 群体行为 启发式 元启发式 选择(遗传算法) 人工智能 机器学习 粒子群优化 数学 经济 人口学 社会学 经济增长 地理 大地测量学
作者
Thaer Thaher,Alaa Sheta,Mohammed Awad,Mohammed Aldasht
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 121712-121712 被引量:2
标识
DOI:10.1016/j.eswa.2023.121712
摘要

The Crow Search Algorithm (CSA) is a swarm-based metaheuristic algorithm that simulates the intelligent foraging behaviors of crows. While CSA effectively handles global optimization problems, it suffers from certain limitations, such as low search accuracy and a tendency to converge to local optima. To address these shortcomings, researchers have proposed modifications and enhancements to CSA's search mechanism. One widely explored approach is the structured population mechanism, which maintains diversity during the search process to mitigate premature convergence. The island model, a common structured population method, divides the population into smaller independent sub-populations called islands, each running in parallel. Migration, the primary technique for promoting population diversity, facilitates the exchange of relevant and useful information between islands during iterations. This paper introduces an enhanced variant of CSA, called Enhanced CSA (ECSA), which incorporates the cooperative island model (iECSA) to improve its search capabilities and avoid premature convergence. The proposed iECSA incorporates two enhancements to CSA. Firstly, an adaptive tournament-based selection mechanism is employed to choose the guided solution. Secondly, the basic random movement in CSA is replaced with a modified operator to enhance exploration. The performance of iECSA is evaluated on 53 real-valued mathematical problems, including 23 classical benchmark functions and 30 IEEE-CEC2014 benchmark functions. A sensitivity analysis of key iECSA parameters is conducted to understand their impact on convergence and diversity. The efficacy of iECSA is validated by conducting an extensive evaluation against a comprehensive set of well-established and recently introduced meta-heuristic algorithms, encompassing a total of seventeen different algorithms. Significant differences among these comparative algorithms are established utilizing statistical tests like Wilcoxon's rank-sum and Friedman's tests. Experimental results demonstrate that iECSA outperforms the fundamental ECSA algorithm on 82.6% of standard test functions, providing more accurate and reliable outcomes compared to other CSA variants. Furthermore, Extensive experimentation consistently showcases that the iECSA outperforms its comparable algorithms across a diverse set of benchmark functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助曹阿四采纳,获得10
刚刚
wwl完成签到,获得积分10
刚刚
Mayily发布了新的文献求助10
刚刚
刚刚
英俊的铭应助机智的安梦采纳,获得10
刚刚
刚刚
文献完成签到,获得积分20
2秒前
orixero应助务实青亦采纳,获得10
2秒前
h4ra1n完成签到,获得积分10
2秒前
大模型应助彩色的沛白采纳,获得30
2秒前
2秒前
梓歆发布了新的文献求助10
3秒前
wxy完成签到,获得积分10
3秒前
wanci应助哈哈哈采纳,获得10
4秒前
不吃辣活不了完成签到,获得积分10
4秒前
JMao完成签到,获得积分10
4秒前
4秒前
曾经的苑博完成签到,获得积分10
4秒前
佰斯特威应助sherry221采纳,获得10
4秒前
5秒前
Alisa发布了新的文献求助10
5秒前
Owen应助宇与鱼采纳,获得10
5秒前
独特斩完成签到,获得积分10
5秒前
6秒前
6秒前
yulongmin发布了新的文献求助10
6秒前
畅快蓝血完成签到,获得积分10
7秒前
7秒前
赵赵赵发布了新的文献求助10
7秒前
7秒前
小白应助qiqishao采纳,获得10
7秒前
金容完成签到,获得积分10
8秒前
逃跑的炸鸡完成签到 ,获得积分10
8秒前
9秒前
Zll完成签到,获得积分10
9秒前
A爷有特点完成签到 ,获得积分10
10秒前
10秒前
林林发布了新的文献求助10
11秒前
深情安青应助meimei采纳,获得30
11秒前
angelinazh发布了新的文献求助30
11秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755562
求助须知:如何正确求助?哪些是违规求助? 3298696
关于积分的说明 10106720
捐赠科研通 3013351
什么是DOI,文献DOI怎么找? 1655100
邀请新用户注册赠送积分活动 789453
科研通“疑难数据库(出版商)”最低求助积分说明 753286