Enhanced variants of crow search algorithm boosted with cooperative based island model for global optimization

早熟收敛 水准点(测量) 计算机科学 局部最优 局部搜索(优化) 人口 趋同(经济学) 锦标赛选拔 数学优化 群体行为 启发式 元启发式 选择(遗传算法) 人工智能 机器学习 粒子群优化 数学 经济 人口学 社会学 经济增长 地理 大地测量学
作者
Thaer Thaher,Alaa Sheta,Mohammed Awad,Mohammed Aldasht
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 121712-121712 被引量:2
标识
DOI:10.1016/j.eswa.2023.121712
摘要

The Crow Search Algorithm (CSA) is a swarm-based metaheuristic algorithm that simulates the intelligent foraging behaviors of crows. While CSA effectively handles global optimization problems, it suffers from certain limitations, such as low search accuracy and a tendency to converge to local optima. To address these shortcomings, researchers have proposed modifications and enhancements to CSA's search mechanism. One widely explored approach is the structured population mechanism, which maintains diversity during the search process to mitigate premature convergence. The island model, a common structured population method, divides the population into smaller independent sub-populations called islands, each running in parallel. Migration, the primary technique for promoting population diversity, facilitates the exchange of relevant and useful information between islands during iterations. This paper introduces an enhanced variant of CSA, called Enhanced CSA (ECSA), which incorporates the cooperative island model (iECSA) to improve its search capabilities and avoid premature convergence. The proposed iECSA incorporates two enhancements to CSA. Firstly, an adaptive tournament-based selection mechanism is employed to choose the guided solution. Secondly, the basic random movement in CSA is replaced with a modified operator to enhance exploration. The performance of iECSA is evaluated on 53 real-valued mathematical problems, including 23 classical benchmark functions and 30 IEEE-CEC2014 benchmark functions. A sensitivity analysis of key iECSA parameters is conducted to understand their impact on convergence and diversity. The efficacy of iECSA is validated by conducting an extensive evaluation against a comprehensive set of well-established and recently introduced meta-heuristic algorithms, encompassing a total of seventeen different algorithms. Significant differences among these comparative algorithms are established utilizing statistical tests like Wilcoxon's rank-sum and Friedman's tests. Experimental results demonstrate that iECSA outperforms the fundamental ECSA algorithm on 82.6% of standard test functions, providing more accurate and reliable outcomes compared to other CSA variants. Furthermore, Extensive experimentation consistently showcases that the iECSA outperforms its comparable algorithms across a diverse set of benchmark functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助德德采纳,获得10
刚刚
77完成签到,获得积分10
刚刚
1秒前
1秒前
爱科研的小潘完成签到,获得积分10
1秒前
兔兔不吐泡泡完成签到,获得积分10
2秒前
2秒前
yagye56发布了新的文献求助10
2秒前
其7应助漂亮的毛巾采纳,获得50
3秒前
4秒前
勤奋的便当完成签到,获得积分20
4秒前
4秒前
Kenzonvay完成签到,获得积分10
5秒前
5秒前
WYF发布了新的文献求助10
6秒前
避橙发布了新的文献求助10
6秒前
6秒前
6秒前
nightmoonsun发布了新的文献求助10
6秒前
user_huang完成签到,获得积分10
7秒前
Xiao完成签到,获得积分10
7秒前
黑白发布了新的文献求助10
7秒前
Andrew02应助小石头采纳,获得10
8秒前
划水发布了新的文献求助30
8秒前
Andrew02应助jnngshan采纳,获得30
8秒前
占臻发布了新的文献求助10
9秒前
自由路发布了新的文献求助10
9秒前
10秒前
星星星星完成签到,获得积分20
11秒前
香蕉觅云应助避橙采纳,获得10
12秒前
友好凌柏发布了新的文献求助30
12秒前
李烁完成签到,获得积分10
13秒前
像鱼发布了新的文献求助10
14秒前
星星星星发布了新的文献求助10
15秒前
16秒前
HEIKU应助lily采纳,获得20
16秒前
划水完成签到,获得积分10
16秒前
17秒前
小朱完成签到 ,获得积分10
17秒前
研友_LOro08完成签到,获得积分10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148173
求助须知:如何正确求助?哪些是违规求助? 2799264
关于积分的说明 7834331
捐赠科研通 2456531
什么是DOI,文献DOI怎么找? 1307282
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655