A clinically applicable AI system for diagnosis of congenital heart diseases based on computed tomography images

医学 计算机断层摄影术 心脏病 直觉 医学物理学 人工智能 放射科 计算机科学 病理 心理学 认知科学
作者
Xiaowei Xu,Qianjun Jia,Haiyun Yuan,Hailong Qiu,Yuhao Dong,Wen Xie,Zeyang Yao,Jiawei Zhang,Zhiqaing Nie,Xiaomeng Li,Yiyu Shi,James Zou,Meiping Huang,Jian Zhuang
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:90: 102953-102953 被引量:12
标识
DOI:10.1016/j.media.2023.102953
摘要

Congenital heart disease (CHD) is the most common type of birth defect. Without timely detection and treatment, approximately one-third of children with CHD would die in the infant period. However, due to the complicated heart structures, early diagnosis of CHD and its types is quite challenging, even for experienced radiologists. Here, we present an artificial intelligence (AI) system that achieves a comparable performance of human experts in the critical task of classifying 17 categories of CHD types. We collected the first-large CT dataset from three different CT machines, including more than 3750 CHD patients over 14 years. Experimental results demonstrate that it can achieve diagnosis accuracy (86.03%) comparable with junior cardiovascular radiologists (86.27%) in a World Health Organization appointed research and cooperation center in China on most types of CHD, and obtains a higher sensitivity (82.91%) than junior cardiovascular radiologists (76.18%). The accuracy of the combination of our AI system (97.20%) and senior radiologists achieves comparable results to that of junior radiologists and senior radiologists (97.16%) which is the current clinical routine. Our AI system can further provide 3D visualization of hearts to senior radiologists for interpretation and flexible review, surgeons for precise intuition of heart structures, and clinicians for more precise outcome prediction. We demonstrate the potential of our model to be integrated into current clinic practice to improve the diagnosis of CHD globally, especially in regions where experienced radiologists can be scarce.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱿鱼阿章发布了新的文献求助10
刚刚
刚刚
传奇3应助monica采纳,获得10
刚刚
简单寻桃发布了新的文献求助10
1秒前
邹友亮完成签到,获得积分10
1秒前
不安的松完成签到 ,获得积分10
1秒前
1秒前
山山而川发布了新的文献求助10
2秒前
萝卜家大小姐完成签到,获得积分10
3秒前
WY完成签到,获得积分10
3秒前
碇真嗣完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
舒服的曼云完成签到,获得积分10
5秒前
华仔应助Gao采纳,获得30
5秒前
5秒前
5秒前
猪猪hero发布了新的文献求助10
5秒前
靓丽的夏兰关注了科研通微信公众号
5秒前
张益萌应助A溶大美噶采纳,获得20
5秒前
上官若男应助单薄的行云采纳,获得10
6秒前
繁荣的水杯关注了科研通微信公众号
6秒前
8秒前
一心发布了新的文献求助10
8秒前
调和发布了新的文献求助100
8秒前
xiaojingyang0802完成签到,获得积分10
8秒前
9秒前
QJQ完成签到 ,获得积分10
10秒前
张振宇完成签到 ,获得积分10
10秒前
善学以致用应助漂亮幻莲采纳,获得10
10秒前
10秒前
11秒前
11秒前
安详的灰狼应助一二采纳,获得10
11秒前
小马甲应助一二采纳,获得10
11秒前
大旭完成签到 ,获得积分10
12秒前
周末颂歌发布了新的文献求助10
12秒前
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3296376
求助须知:如何正确求助?哪些是违规求助? 2932250
关于积分的说明 8455561
捐赠科研通 2604724
什么是DOI,文献DOI怎么找? 1421953
科研通“疑难数据库(出版商)”最低求助积分说明 661263
邀请新用户注册赠送积分活动 644273