MiniTracker: Large-Scale Sensitive Information Tracking in Mini Apps

计算机科学 JavaScript 人气 渲染(计算机图形) 情报检索 数据挖掘 万维网 人工智能 心理学 社会心理学
作者
Wei Li,Borui Yang,Hangyu Ye,Liyao Xiang,Q. Tao,Xinbing Wang,Chenghu Zhou
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 2099-2114 被引量:3
标识
DOI:10.1109/tdsc.2023.3299945
摘要

Running on host mobile applications, mini apps have gained increasing popularity these days for its convenience in installation and usage. However, being easy to use allows mini apps to freely access a large amount of user information, mostly without close inspection of privacy violations. Hence it becomes a crucial issue to automatically track sensitive flows in mini apps. Although flow analysis has been widely studied, unique challenges emerge: the analysis tool should not only handle mini app-specific features such as flows that interweave between rendering and logic, and asynchronous executions, but also deal with problems raised by Javascript development: the performance tradeoff between precision and efficiency, and function aliases. To this end, we propose MiniTracker , an automatic sensitive flow tracking tool which well handles mini app features, constructs assignment flow graphs as common representation across different host apps, searches function aliases, and analyzes the graph by property chains. We show our design choices achieve a sweet spot in the tradeoff between precision and efficiency, with superior performance compared to the state-of-the-art. We also perform a large-scale study on 150 k mini apps, which reveals the common leakage patterns and offers insights into the privacy threats of mini apps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助gwh采纳,获得10
1秒前
1秒前
1秒前
1秒前
隐形曼青应助zhihan采纳,获得10
3秒前
3秒前
xylxyl完成签到,获得积分10
3秒前
4秒前
ZBN完成签到,获得积分10
4秒前
222关闭了222文献求助
5秒前
chinh完成签到,获得积分10
5秒前
钮祜禄废废完成签到,获得积分10
5秒前
5秒前
曾经富完成签到,获得积分10
7秒前
酷酷海豚完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
9秒前
青青完成签到 ,获得积分10
11秒前
Chan0501发布了新的文献求助10
11秒前
昭昭完成签到,获得积分10
12秒前
SCI发布了新的文献求助10
12秒前
卓然完成签到,获得积分10
12秒前
李来仪发布了新的文献求助10
13秒前
14秒前
菲菲呀完成签到,获得积分10
14秒前
Rrr发布了新的文献求助10
14秒前
16秒前
陌路完成签到,获得积分10
16秒前
善学以致用应助leon采纳,获得30
16秒前
17秒前
斯文败类应助嘻嘻采纳,获得10
17秒前
科研通AI5应助小只bb采纳,获得30
17秒前
yyyy发布了新的文献求助10
17秒前
2023AKY完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794