A Novel Knowledge-Driven Automated Solution for High-Resolution Cropland Extraction by Cross-Scale Sample Transfer

计算机科学 比例(比率) 图像分辨率 样品(材料) 萃取(化学) 遥感 工作流程 人工智能 数据库 地图学 化学 色谱法 地质学 地理
作者
Wei Zhang,Shanchuan Guo,Peng Zhang,Zilong Xia,Xingang Zhang,Cong Lin,Pengfei Tang,Hong Fang,Peijun Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:18
标识
DOI:10.1109/tgrs.2023.3299956
摘要

Accurate cropland mapping is significant for food security and sustainable development. The existing cropland map based on remote sensing mainly focus on moderate to coarse spatial resolution, and these products are generally unsuitable for precision agriculture due to the lack of spatial details. Therefore, there is an urgent need to produce high-resolution (HR) cropland maps to meet current application demands. Recently, the typical classification workflow of HR images employs deep learning models combined with manually annotated samples, and visual interpretation of samples is usually labor-intensive and time-consuming, which is not conducive to large-scale applications. To address this problem, this paper proposes an automated HR cropland extraction solution, namely RRE (Refinement-Reclassification-Extraction), including (i) Refinement of 10 m spatial resolution cropland products, (ii) Reclassifying cropland using the refined product as sample source, and (iii) Extracting HR cropland via designed cross-scale sample transfer. The strength of the proposed framework is that it leverages existing moderate-resolution public products as prior knowledge and provides cross-scale transferable samples for HR images. The whole process does not require manual labeling of samples and is highly automated. Specifically, the experimental results in the three main grain production regions show that, the RRE framework effectively reduces the interference of road networks and ridges, and F1 scores of extracted 1 m HR cropland reaches 87.71 %~94.16 %, which is comparable to the fully supervised cropland extraction method. In addition, the 10 m reclassified cropland, produced by the intermediate process of the RRE, outperforms current cropland product of ESRI Land Cover and ESA World Cover.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英吉利25发布了新的文献求助10
3秒前
倩倩完成签到 ,获得积分10
3秒前
chen完成签到 ,获得积分20
4秒前
5秒前
易槐完成签到 ,获得积分10
8秒前
ZHDNCG完成签到,获得积分10
8秒前
香蕉诗蕊应助蝌蚪采纳,获得10
9秒前
求助人员发布了新的文献求助10
10秒前
jeronimo完成签到,获得积分10
10秒前
方格子完成签到 ,获得积分10
12秒前
redstone完成签到,获得积分10
15秒前
自信的高山完成签到,获得积分10
17秒前
ZJJ完成签到,获得积分10
18秒前
秋秋完成签到,获得积分10
19秒前
MrChew完成签到 ,获得积分10
19秒前
嬛嬛完成签到,获得积分10
19秒前
Akim应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
所所应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
青木完成签到 ,获得积分10
21秒前
21秒前
zhangj696完成签到,获得积分10
25秒前
nigexiaohua完成签到,获得积分10
25秒前
维生素完成签到 ,获得积分10
25秒前
知识进脑子吧完成签到 ,获得积分10
26秒前
量子星尘发布了新的文献求助10
27秒前
大力的诗蕾完成签到 ,获得积分10
27秒前
量子星尘发布了新的文献求助10
29秒前
小耿木木完成签到,获得积分10
31秒前
mojito完成签到 ,获得积分0
33秒前
33秒前
科研菜鸟完成签到 ,获得积分10
35秒前
马麻薯完成签到,获得积分10
36秒前
Mint完成签到 ,获得积分10
37秒前
量子星尘发布了新的文献求助10
40秒前
41秒前
研友_LpQGjn完成签到 ,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671581
求助须知:如何正确求助?哪些是违规求助? 4920068
关于积分的说明 15135054
捐赠科研通 4830410
什么是DOI,文献DOI怎么找? 2587061
邀请新用户注册赠送积分活动 1540682
关于科研通互助平台的介绍 1498986