A Novel Knowledge-Driven Automated Solution for High-Resolution Cropland Extraction by Cross-Scale Sample Transfer

计算机科学 比例(比率) 图像分辨率 样品(材料) 萃取(化学) 遥感 工作流程 人工智能 数据库 地图学 色谱法 地质学 化学 地理
作者
Wei Zhang,Shanchuan Guo,Peng Zhang,Zilong Xia,Xingang Zhang,Cong Lin,Pengfei Tang,Hong Fang,Peijun Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:5
标识
DOI:10.1109/tgrs.2023.3299956
摘要

Accurate cropland mapping is significant for food security and sustainable development. The existing cropland map based on remote sensing mainly focus on moderate to coarse spatial resolution, and these products are generally unsuitable for precision agriculture due to the lack of spatial details. Therefore, there is an urgent need to produce high-resolution (HR) cropland maps to meet current application demands. Recently, the typical classification workflow of HR images employs deep learning models combined with manually annotated samples, and visual interpretation of samples is usually labor-intensive and time-consuming, which is not conducive to large-scale applications. To address this problem, this paper proposes an automated HR cropland extraction solution, namely RRE (Refinement-Reclassification-Extraction), including (i) Refinement of 10 m spatial resolution cropland products, (ii) Reclassifying cropland using the refined product as sample source, and (iii) Extracting HR cropland via designed cross-scale sample transfer. The strength of the proposed framework is that it leverages existing moderate-resolution public products as prior knowledge and provides cross-scale transferable samples for HR images. The whole process does not require manual labeling of samples and is highly automated. Specifically, the experimental results in the three main grain production regions show that, the RRE framework effectively reduces the interference of road networks and ridges, and F1 scores of extracted 1 m HR cropland reaches 87.71 %~94.16 %, which is comparable to the fully supervised cropland extraction method. In addition, the 10 m reclassified cropland, produced by the intermediate process of the RRE, outperforms current cropland product of ESRI Land Cover and ESA World Cover.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助剑影采纳,获得10
刚刚
刚刚
1秒前
王梦秋发布了新的文献求助10
1秒前
xiao双月发布了新的文献求助10
2秒前
贤惠的曼凝完成签到,获得积分10
2秒前
鱼跃发布了新的文献求助10
3秒前
传奇3应助抗氧剂采纳,获得10
3秒前
3秒前
3秒前
朴实的小懒虫完成签到,获得积分10
4秒前
hebishan完成签到,获得积分10
5秒前
cjchem发布了新的文献求助10
6秒前
无花果应助边走边听采纳,获得10
7秒前
7秒前
7秒前
无花果应助feifeifei采纳,获得10
7秒前
开放如天完成签到 ,获得积分10
8秒前
laber应助fangfeng采纳,获得50
8秒前
搜集达人应助三峡好人采纳,获得10
8秒前
8秒前
9秒前
852应助海上钢琴家采纳,获得10
9秒前
luo发布了新的文献求助10
9秒前
9秒前
大个应助追尾的猫采纳,获得10
10秒前
CodeCraft应助闪闪的大炮采纳,获得10
11秒前
科研通AI6应助何小明采纳,获得10
11秒前
顾矜应助Flora采纳,获得10
11秒前
慕青应助奥丁蒂法采纳,获得10
11秒前
芫华发布了新的文献求助10
12秒前
13秒前
科研通AI6应助迷路的曼凡采纳,获得30
13秒前
照相机发布了新的文献求助10
13秒前
万能图书馆应助鲤鱼山人采纳,获得10
14秒前
14秒前
15秒前
抗氧剂完成签到,获得积分10
15秒前
lvlv发布了新的文献求助30
15秒前
cjchem完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321077
求助须知:如何正确求助?哪些是违规求助? 4462894
关于积分的说明 13888018
捐赠科研通 4353883
什么是DOI,文献DOI怎么找? 2391403
邀请新用户注册赠送积分活动 1385061
关于科研通互助平台的介绍 1354824