已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Novel Knowledge-Driven Automated Solution for High-Resolution Cropland Extraction by Cross-Scale Sample Transfer

计算机科学 比例(比率) 图像分辨率 样品(材料) 萃取(化学) 遥感 工作流程 人工智能 数据库 地图学 化学 色谱法 地质学 地理
作者
Wei Zhang,Shanchuan Guo,Peng Zhang,Zilong Xia,Xingang Zhang,Cong Lin,Pengfei Tang,Hong Fang,Peijun Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:18
标识
DOI:10.1109/tgrs.2023.3299956
摘要

Accurate cropland mapping is significant for food security and sustainable development. The existing cropland map based on remote sensing mainly focus on moderate to coarse spatial resolution, and these products are generally unsuitable for precision agriculture due to the lack of spatial details. Therefore, there is an urgent need to produce high-resolution (HR) cropland maps to meet current application demands. Recently, the typical classification workflow of HR images employs deep learning models combined with manually annotated samples, and visual interpretation of samples is usually labor-intensive and time-consuming, which is not conducive to large-scale applications. To address this problem, this paper proposes an automated HR cropland extraction solution, namely RRE (Refinement-Reclassification-Extraction), including (i) Refinement of 10 m spatial resolution cropland products, (ii) Reclassifying cropland using the refined product as sample source, and (iii) Extracting HR cropland via designed cross-scale sample transfer. The strength of the proposed framework is that it leverages existing moderate-resolution public products as prior knowledge and provides cross-scale transferable samples for HR images. The whole process does not require manual labeling of samples and is highly automated. Specifically, the experimental results in the three main grain production regions show that, the RRE framework effectively reduces the interference of road networks and ridges, and F1 scores of extracted 1 m HR cropland reaches 87.71 %~94.16 %, which is comparable to the fully supervised cropland extraction method. In addition, the 10 m reclassified cropland, produced by the intermediate process of the RRE, outperforms current cropland product of ESRI Land Cover and ESA World Cover.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白宝Ww发布了新的文献求助10
刚刚
ww417发布了新的文献求助10
1秒前
夏瑞完成签到 ,获得积分10
2秒前
xiaolei001应助随心采纳,获得10
2秒前
汉堡包应助淇毅果采纳,获得10
3秒前
3秒前
5秒前
kh发布了新的文献求助10
5秒前
丰富的芯完成签到,获得积分20
5秒前
阿智发布了新的文献求助10
6秒前
研友_VZG7GZ应助lnk123采纳,获得10
6秒前
encorekk完成签到,获得积分10
8秒前
Lucas应助Bobby采纳,获得10
8秒前
9秒前
福斯卡完成签到 ,获得积分10
9秒前
英俊的铭应助金垚采纳,获得10
9秒前
11秒前
kh完成签到,获得积分10
11秒前
霸气向日葵完成签到 ,获得积分10
11秒前
青柠发布了新的文献求助10
12秒前
yxt完成签到 ,获得积分10
12秒前
怡然以寒完成签到 ,获得积分10
12秒前
14秒前
15秒前
15秒前
16秒前
charint应助ceeray23采纳,获得20
16秒前
16秒前
六六发布了新的文献求助10
18秒前
王亚茹发布了新的文献求助10
19秒前
psj发布了新的文献求助10
20秒前
lnk123发布了新的文献求助10
21秒前
charint应助曹能豪采纳,获得10
22秒前
充电宝应助轩xuan采纳,获得10
23秒前
23秒前
24秒前
charint应助ceeray23采纳,获得20
26秒前
金垚发布了新的文献求助10
27秒前
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515171
求助须知:如何正确求助?哪些是违规求助? 4608772
关于积分的说明 14513045
捐赠科研通 4545029
什么是DOI,文献DOI怎么找? 2490382
邀请新用户注册赠送积分活动 1472349
关于科研通互助平台的介绍 1444039