A Novel Knowledge-Driven Automated Solution for High-Resolution Cropland Extraction by Cross-Scale Sample Transfer

计算机科学 比例(比率) 图像分辨率 样品(材料) 萃取(化学) 遥感 工作流程 人工智能 数据库 地图学 色谱法 地质学 化学 地理
作者
Wei Zhang,Shanchuan Guo,Peng Zhang,Zilong Xia,Xingang Zhang,Cong Lin,Pengfei Tang,Hong Fang,Peijun Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:18
标识
DOI:10.1109/tgrs.2023.3299956
摘要

Accurate cropland mapping is significant for food security and sustainable development. The existing cropland map based on remote sensing mainly focus on moderate to coarse spatial resolution, and these products are generally unsuitable for precision agriculture due to the lack of spatial details. Therefore, there is an urgent need to produce high-resolution (HR) cropland maps to meet current application demands. Recently, the typical classification workflow of HR images employs deep learning models combined with manually annotated samples, and visual interpretation of samples is usually labor-intensive and time-consuming, which is not conducive to large-scale applications. To address this problem, this paper proposes an automated HR cropland extraction solution, namely RRE (Refinement-Reclassification-Extraction), including (i) Refinement of 10 m spatial resolution cropland products, (ii) Reclassifying cropland using the refined product as sample source, and (iii) Extracting HR cropland via designed cross-scale sample transfer. The strength of the proposed framework is that it leverages existing moderate-resolution public products as prior knowledge and provides cross-scale transferable samples for HR images. The whole process does not require manual labeling of samples and is highly automated. Specifically, the experimental results in the three main grain production regions show that, the RRE framework effectively reduces the interference of road networks and ridges, and F1 scores of extracted 1 m HR cropland reaches 87.71 %~94.16 %, which is comparable to the fully supervised cropland extraction method. In addition, the 10 m reclassified cropland, produced by the intermediate process of the RRE, outperforms current cropland product of ESRI Land Cover and ESA World Cover.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龙龙龙发布了新的文献求助10
1秒前
2秒前
充电宝应助RRR232采纳,获得10
4秒前
lxd发布了新的文献求助10
5秒前
6秒前
6秒前
醉熏的烤鸡完成签到 ,获得积分10
8秒前
Akim应助王爷教你白给采纳,获得10
9秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
彭于晏应助凶狠的剑封采纳,获得30
13秒前
科研通AI6应助niniyiya采纳,获得10
15秒前
西一阿铭发布了新的文献求助10
16秒前
在水一方应助lxd采纳,获得10
16秒前
17秒前
19秒前
辉仔发布了新的文献求助30
20秒前
20秒前
20秒前
huenguyenvan完成签到,获得积分10
20秒前
科研通AI6应助龙龙龙采纳,获得10
20秒前
丘比特应助王爷教你白给采纳,获得10
21秒前
23秒前
小chen发布了新的文献求助10
23秒前
23秒前
小二郎应助皮戾采纳,获得10
25秒前
嘉悦发布了新的文献求助10
25秒前
旧时光发布了新的文献求助10
27秒前
ZTK完成签到,获得积分10
28秒前
拾一发布了新的文献求助10
28秒前
29秒前
30秒前
Alex发布了新的文献求助10
33秒前
orixero应助王爷教你白给采纳,获得10
34秒前
34秒前
英姑应助annis采纳,获得10
34秒前
36秒前
36秒前
only完成签到 ,获得积分10
37秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431783
求助须知:如何正确求助?哪些是违规求助? 4544616
关于积分的说明 14193251
捐赠科研通 4463748
什么是DOI,文献DOI怎么找? 2446856
邀请新用户注册赠送积分活动 1438193
关于科研通互助平台的介绍 1414891