A Novel Knowledge-Driven Automated Solution for High-Resolution Cropland Extraction by Cross-Scale Sample Transfer

计算机科学 比例(比率) 图像分辨率 样品(材料) 萃取(化学) 遥感 工作流程 人工智能 数据库 地图学 化学 色谱法 地质学 地理
作者
Wei Zhang,Shanchuan Guo,Peng Zhang,Zilong Xia,Xingang Zhang,Cong Lin,Pengfei Tang,Hong Fang,Peijun Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:5
标识
DOI:10.1109/tgrs.2023.3299956
摘要

Accurate cropland mapping is significant for food security and sustainable development. The existing cropland map based on remote sensing mainly focus on moderate to coarse spatial resolution, and these products are generally unsuitable for precision agriculture due to the lack of spatial details. Therefore, there is an urgent need to produce high-resolution (HR) cropland maps to meet current application demands. Recently, the typical classification workflow of HR images employs deep learning models combined with manually annotated samples, and visual interpretation of samples is usually labor-intensive and time-consuming, which is not conducive to large-scale applications. To address this problem, this paper proposes an automated HR cropland extraction solution, namely RRE (Refinement-Reclassification-Extraction), including (i) Refinement of 10 m spatial resolution cropland products, (ii) Reclassifying cropland using the refined product as sample source, and (iii) Extracting HR cropland via designed cross-scale sample transfer. The strength of the proposed framework is that it leverages existing moderate-resolution public products as prior knowledge and provides cross-scale transferable samples for HR images. The whole process does not require manual labeling of samples and is highly automated. Specifically, the experimental results in the three main grain production regions show that, the RRE framework effectively reduces the interference of road networks and ridges, and F1 scores of extracted 1 m HR cropland reaches 87.71 %~94.16 %, which is comparable to the fully supervised cropland extraction method. In addition, the 10 m reclassified cropland, produced by the intermediate process of the RRE, outperforms current cropland product of ESRI Land Cover and ESA World Cover.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助wangayting采纳,获得30
3秒前
辛勤怀绿完成签到,获得积分10
3秒前
小羊羔子完成签到,获得积分20
4秒前
时尚数据线完成签到,获得积分10
5秒前
小李有醴关注了科研通微信公众号
5秒前
Jun完成签到 ,获得积分10
8秒前
JamesPei应助nml采纳,获得10
8秒前
文艺安青完成签到,获得积分20
8秒前
10秒前
bkagyin应助文艺安青采纳,获得10
12秒前
LYY完成签到,获得积分10
12秒前
12秒前
wenyi完成签到 ,获得积分10
13秒前
盐汽水完成签到 ,获得积分10
13秒前
花开发布了新的文献求助10
14秒前
pcx完成签到,获得积分10
15秒前
17秒前
18秒前
18秒前
19秒前
LYY发布了新的文献求助10
19秒前
火山蜗牛完成签到,获得积分10
20秒前
nimonimo完成签到,获得积分20
20秒前
22秒前
nml发布了新的文献求助10
22秒前
楠楠发布了新的文献求助10
22秒前
23秒前
25秒前
文艺安青发布了新的文献求助10
27秒前
hajy完成签到 ,获得积分10
27秒前
27秒前
八点必起完成签到,获得积分10
29秒前
酷波er应助花开采纳,获得10
29秒前
大大小小发布了新的文献求助10
30秒前
zzz发布了新的文献求助10
30秒前
傻傻的芷巧完成签到,获得积分10
34秒前
一五完成签到,获得积分10
34秒前
34秒前
Kaysarr完成签到,获得积分10
38秒前
张小南完成签到,获得积分10
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137539
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7787114
捐赠科研通 2444837
什么是DOI,文献DOI怎么找? 1300071
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023