A Novel Knowledge-Driven Automated Solution for High-Resolution Cropland Extraction by Cross-Scale Sample Transfer

计算机科学 比例(比率) 图像分辨率 样品(材料) 萃取(化学) 遥感 工作流程 人工智能 数据库 地图学 化学 色谱法 地质学 地理
作者
Wei Zhang,Shanchuan Guo,Peng Zhang,Zilong Xia,Xingang Zhang,Cong Lin,Pengfei Tang,Hong Fang,Peijun Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:18
标识
DOI:10.1109/tgrs.2023.3299956
摘要

Accurate cropland mapping is significant for food security and sustainable development. The existing cropland map based on remote sensing mainly focus on moderate to coarse spatial resolution, and these products are generally unsuitable for precision agriculture due to the lack of spatial details. Therefore, there is an urgent need to produce high-resolution (HR) cropland maps to meet current application demands. Recently, the typical classification workflow of HR images employs deep learning models combined with manually annotated samples, and visual interpretation of samples is usually labor-intensive and time-consuming, which is not conducive to large-scale applications. To address this problem, this paper proposes an automated HR cropland extraction solution, namely RRE (Refinement-Reclassification-Extraction), including (i) Refinement of 10 m spatial resolution cropland products, (ii) Reclassifying cropland using the refined product as sample source, and (iii) Extracting HR cropland via designed cross-scale sample transfer. The strength of the proposed framework is that it leverages existing moderate-resolution public products as prior knowledge and provides cross-scale transferable samples for HR images. The whole process does not require manual labeling of samples and is highly automated. Specifically, the experimental results in the three main grain production regions show that, the RRE framework effectively reduces the interference of road networks and ridges, and F1 scores of extracted 1 m HR cropland reaches 87.71 %~94.16 %, which is comparable to the fully supervised cropland extraction method. In addition, the 10 m reclassified cropland, produced by the intermediate process of the RRE, outperforms current cropland product of ESRI Land Cover and ESA World Cover.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单如天发布了新的文献求助10
刚刚
乐乐应助轻松的延恶采纳,获得10
刚刚
上官若男应助HCl采纳,获得10
刚刚
建设发布了新的文献求助10
刚刚
pluto应助倩倩采纳,获得10
1秒前
Redemption发布了新的文献求助10
1秒前
梓然发布了新的文献求助10
1秒前
麦子完成签到,获得积分10
2秒前
轩辕寄翠完成签到 ,获得积分10
2秒前
念安发布了新的文献求助10
2秒前
调皮的炳完成签到,获得积分10
3秒前
3秒前
3秒前
追光者发布了新的文献求助10
4秒前
Yyuan发布了新的文献求助10
4秒前
4秒前
Susanx发布了新的文献求助10
5秒前
初雪发布了新的文献求助10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得30
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
asdfzxcv应助科研通管家采纳,获得150
5秒前
5秒前
5秒前
5秒前
6秒前
三岁应助科研通管家采纳,获得10
6秒前
6秒前
大模型应助科研通管家采纳,获得30
6秒前
6秒前
6秒前
三岁应助科研通管家采纳,获得10
6秒前
asdfzxcv应助科研通管家采纳,获得10
6秒前
梁钋瑞完成签到,获得积分10
6秒前
freebird应助科研通管家采纳,获得10
6秒前
跳跳发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648015
求助须知:如何正确求助?哪些是违规求助? 4774710
关于积分的说明 15042383
捐赠科研通 4807069
什么是DOI,文献DOI怎么找? 2570494
邀请新用户注册赠送积分活动 1527283
关于科研通互助平台的介绍 1486389