A Novel Knowledge-Driven Automated Solution for High-Resolution Cropland Extraction by Cross-Scale Sample Transfer

计算机科学 比例(比率) 图像分辨率 样品(材料) 萃取(化学) 遥感 工作流程 人工智能 数据库 地图学 色谱法 地质学 化学 地理
作者
Wei Zhang,Shanchuan Guo,Peng Zhang,Zilong Xia,Xingang Zhang,Cong Lin,Pengfei Tang,Hong Fang,Peijun Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:5
标识
DOI:10.1109/tgrs.2023.3299956
摘要

Accurate cropland mapping is significant for food security and sustainable development. The existing cropland map based on remote sensing mainly focus on moderate to coarse spatial resolution, and these products are generally unsuitable for precision agriculture due to the lack of spatial details. Therefore, there is an urgent need to produce high-resolution (HR) cropland maps to meet current application demands. Recently, the typical classification workflow of HR images employs deep learning models combined with manually annotated samples, and visual interpretation of samples is usually labor-intensive and time-consuming, which is not conducive to large-scale applications. To address this problem, this paper proposes an automated HR cropland extraction solution, namely RRE (Refinement-Reclassification-Extraction), including (i) Refinement of 10 m spatial resolution cropland products, (ii) Reclassifying cropland using the refined product as sample source, and (iii) Extracting HR cropland via designed cross-scale sample transfer. The strength of the proposed framework is that it leverages existing moderate-resolution public products as prior knowledge and provides cross-scale transferable samples for HR images. The whole process does not require manual labeling of samples and is highly automated. Specifically, the experimental results in the three main grain production regions show that, the RRE framework effectively reduces the interference of road networks and ridges, and F1 scores of extracted 1 m HR cropland reaches 87.71 %~94.16 %, which is comparable to the fully supervised cropland extraction method. In addition, the 10 m reclassified cropland, produced by the intermediate process of the RRE, outperforms current cropland product of ESRI Land Cover and ESA World Cover.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chen完成签到,获得积分10
刚刚
zzzzzzzp完成签到,获得积分10
刚刚
taytay完成签到,获得积分10
刚刚
LEE123完成签到,获得积分10
刚刚
1秒前
Lze发布了新的文献求助10
1秒前
希望天下0贩的0应助夜夜采纳,获得10
1秒前
猫小咪发布了新的文献求助10
2秒前
RaynorHank发布了新的文献求助50
2秒前
2秒前
cccccc完成签到,获得积分10
3秒前
maiyatang完成签到,获得积分10
3秒前
3秒前
小马甲应助2633148059采纳,获得10
4秒前
miao完成签到,获得积分10
4秒前
Bertha完成签到,获得积分10
4秒前
11完成签到,获得积分10
4秒前
4秒前
SciGPT应助Baron采纳,获得10
6秒前
左岸完成签到,获得积分10
6秒前
cong完成签到,获得积分10
6秒前
不低头完成签到,获得积分10
6秒前
6秒前
phil完成签到,获得积分10
7秒前
camellia完成签到 ,获得积分10
7秒前
samuel完成签到,获得积分10
7秒前
在水一方应助梧桐雨210采纳,获得10
7秒前
helinahs发布了新的文献求助10
7秒前
8秒前
8秒前
umi发布了新的文献求助10
8秒前
Zone发布了新的文献求助10
9秒前
SciGPT应助菠萝蜜采纳,获得10
9秒前
9秒前
陈曦读研版完成签到 ,获得积分10
10秒前
斯文凝蕊完成签到,获得积分10
10秒前
Linzi完成签到,获得积分10
10秒前
psycho发布了新的文献求助10
11秒前
陈大大完成签到,获得积分10
11秒前
浮游应助刘明采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5162882
求助须知:如何正确求助?哪些是违规求助? 4355956
关于积分的说明 13560837
捐赠科研通 4200975
什么是DOI,文献DOI怎么找? 2304090
邀请新用户注册赠送积分活动 1304063
关于科研通互助平台的介绍 1250390