Modeling the load carrying capacity of corroded reinforced concrete compression bending members using explainable machine learning

结构工程 钢筋 材料科学 承载能力 弯曲 压缩(物理) 阿达布思 腐蚀 计算机科学 支持向量机 混凝土保护层 钢筋混凝土 复合材料 机器学习 工程类 生态学 生物
作者
Tingbin Liu,Tao Huang,Jiaxiang Ou,Ning Xu,Yunxia Li,Yan Ai,Zhihan Xu,Hong Bai
出处
期刊:Materials today communications [Elsevier BV]
卷期号:36: 106781-106781 被引量:11
标识
DOI:10.1016/j.mtcomm.2023.106781
摘要

Corrosion of reinforcement can lead to a decrease in the load carrying capacity of reinforced concrete structures and affect their safety. Therefore, accurate evaluation of the ultimate load carrying capacity is crucial for the maintenance and reinforcement of corroded reinforced concrete structures. In this paper, based on experimental research data of 192 corroded reinforced concrete compression bending members, data-driven analysis was conducted using ANN, SVM, RF, and AdaBoost algorithms to establish the relationship between the influencing factors of the load carrying capacity and their ultimate load carrying capacity. The input variables include the section width of the member, section height of the member, length of member, yield strength of reinforcement, diameter of longitudinal reinforcement, compressive strength of concrete, thickness of concrete cover, hoop diameter, original eccentricity, corrosion rate and the ultimate load carrying capacity is the output variable. Additionally, this study innovatively utilizes the Shapley additive explanations (SHAP) method to enhance the interpretability of the ML models, overcoming the "black box" issue associated with ML methods. Furthermore, the performance of the ML models is compared with theoretical formulas. The results indicate that the ML models exhibit good predictive performance, with higher accuracy than thetheoretical calculation formulas. And the predictive performance of ensemble learning models (RF, AdaBoost) is better than that of single learning models (ANN, SVM). The newly developed hybrid ML model is likely to become a new choice for dealing with the load carrying capacity problem of corroded reinforced concrete compression bending members.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
imchenyin完成签到,获得积分10
刚刚
大舟Austin完成签到 ,获得积分10
刚刚
踏雪无痕发布了新的文献求助10
1秒前
xiaohua发布了新的文献求助30
1秒前
1秒前
Allon完成签到,获得积分10
1秒前
wittig发布了新的文献求助10
2秒前
orixero应助myj采纳,获得10
2秒前
默默水之发布了新的文献求助10
3秒前
3秒前
帕尼灬尼发布了新的文献求助10
3秒前
CucRuotThua完成签到,获得积分10
4秒前
香蕉觅云应助热情铭采纳,获得10
4秒前
why完成签到,获得积分10
4秒前
4秒前
4秒前
03完成签到,获得积分10
5秒前
5秒前
小明完成签到,获得积分10
5秒前
HPP123完成签到,获得积分10
5秒前
5秒前
chenyunxia发布了新的文献求助10
6秒前
没写名字233完成签到 ,获得积分10
7秒前
7秒前
7秒前
孙刚发布了新的文献求助10
7秒前
ty发布了新的文献求助10
7秒前
xing525888完成签到,获得积分20
7秒前
十月完成签到 ,获得积分10
7秒前
桐桐应助blueming采纳,获得10
8秒前
8秒前
8秒前
wanci应助小怪兽采纳,获得10
9秒前
孙晓燕完成签到 ,获得积分10
10秒前
灰灰灰发布了新的文献求助10
11秒前
万能图书馆应助欢--采纳,获得10
11秒前
无私诗桃完成签到,获得积分10
11秒前
xing525888发布了新的文献求助10
11秒前
11秒前
wangjie发布了新的文献求助10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635