Modeling the load carrying capacity of corroded reinforced concrete compression bending members using explainable machine learning

结构工程 钢筋 材料科学 承载能力 弯曲 压缩(物理) 阿达布思 腐蚀 计算机科学 支持向量机 混凝土保护层 钢筋混凝土 复合材料 机器学习 工程类 生物 生态学
作者
Tingbin Liu,Tao Huang,Jiaxiang Ou,Ning Xu,Yunxia Li,Yan Ai,Zhihan Xu,Hong Bai
出处
期刊:Materials today communications [Elsevier]
卷期号:36: 106781-106781 被引量:11
标识
DOI:10.1016/j.mtcomm.2023.106781
摘要

Corrosion of reinforcement can lead to a decrease in the load carrying capacity of reinforced concrete structures and affect their safety. Therefore, accurate evaluation of the ultimate load carrying capacity is crucial for the maintenance and reinforcement of corroded reinforced concrete structures. In this paper, based on experimental research data of 192 corroded reinforced concrete compression bending members, data-driven analysis was conducted using ANN, SVM, RF, and AdaBoost algorithms to establish the relationship between the influencing factors of the load carrying capacity and their ultimate load carrying capacity. The input variables include the section width of the member, section height of the member, length of member, yield strength of reinforcement, diameter of longitudinal reinforcement, compressive strength of concrete, thickness of concrete cover, hoop diameter, original eccentricity, corrosion rate and the ultimate load carrying capacity is the output variable. Additionally, this study innovatively utilizes the Shapley additive explanations (SHAP) method to enhance the interpretability of the ML models, overcoming the "black box" issue associated with ML methods. Furthermore, the performance of the ML models is compared with theoretical formulas. The results indicate that the ML models exhibit good predictive performance, with higher accuracy than thetheoretical calculation formulas. And the predictive performance of ensemble learning models (RF, AdaBoost) is better than that of single learning models (ANN, SVM). The newly developed hybrid ML model is likely to become a new choice for dealing with the load carrying capacity problem of corroded reinforced concrete compression bending members.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助FantasyGud采纳,获得10
刚刚
WMU1234完成签到,获得积分20
2秒前
2秒前
3秒前
3秒前
jio大洁发布了新的文献求助10
3秒前
yujiashun发布了新的文献求助20
3秒前
4秒前
lishengnan111完成签到,获得积分10
4秒前
rysben发布了新的文献求助10
5秒前
Hello应助小小谢采纳,获得10
6秒前
许许完成签到,获得积分20
7秒前
元贞发布了新的文献求助10
8秒前
aom发布了新的文献求助10
8秒前
大个应助今夜无人入眠采纳,获得10
9秒前
阿文给阿文的求助进行了留言
10秒前
10秒前
11秒前
Hello应助徐瑶瑶采纳,获得10
11秒前
尽快毕业完成签到 ,获得积分10
11秒前
ggyyf发布了新的文献求助10
13秒前
13秒前
无花果应助jiujiuhuang采纳,获得10
13秒前
我是人机完成签到,获得积分10
14秒前
按揭发布了新的文献求助10
14秒前
15秒前
研友_R2D2发布了新的文献求助10
16秒前
粘豆包发布了新的文献求助10
16秒前
十七号日落完成签到 ,获得积分10
16秒前
科研小白发布了新的文献求助10
17秒前
打打应助魔幻的丹秋采纳,获得10
18秒前
19秒前
WMU1234发布了新的文献求助10
19秒前
19秒前
阿航发布了新的文献求助10
20秒前
20秒前
从容芮应助开朗发卡采纳,获得10
23秒前
23秒前
小二郎应助十七号日落采纳,获得10
23秒前
任性迎南完成签到,获得积分10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313969
求助须知:如何正确求助?哪些是违规求助? 2946329
关于积分的说明 8529696
捐赠科研通 2621983
什么是DOI,文献DOI怎么找? 1434250
科研通“疑难数据库(出版商)”最低求助积分说明 665190
邀请新用户注册赠送积分活动 650774