电致变色
材料科学
光电子学
红外线的
可见光谱
电致变色装置
调制(音乐)
聚苯胺
光学
聚合物
电极
哲学
化学
物理
物理化学
复合材料
聚合
美学
作者
Shanshan Song,Tingting Hao,Li Wang,Dongqi Liu,Zichen Ren,Y S Zhang,Wenchao Liu,Leipeng Zhang,Yao Li
标识
DOI:10.1002/adom.202301065
摘要
Abstract Polyaniline (PANI) can achieve reversible optical modulation in visible and infrared (IR) bands under the action of voltage. However, PANI‐based electrochromic devices cannot cope with the dual detection of visible and IR light to realize the transmission of information due to the linkage restriction between the spectral modulation in the visible and IR region. Here, IR low‐absorptive inorganic pigments as colorants and IR high‐transparent polymer as a binder are utilized to prepare colored films with high transparency. A camouflage layer against visible light detection is constructed on the surface of IR electrochromic devices, and the information transmission is realized in the IR band by controlling the thermal radiation characteristics. Furthermore, thermochromic microcapsules (TMs) that change color under external thermal stimuli are introduced to fabricate a thermochromic and IR transparent functional layer, which is attached to the surface of IR electrochromic devices and endows the devices with separate spectral modulation ability in the visible and IR region. Multicolored displays are fabricated by arraying various devices. Moreover, visual patterns are prepared on the surface of IR electrochromic devices by dispensing technology. This configuration endows the device with a promising potential for anti‐counterfeiting, optical security, and related applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI