材料科学
化学工程
吸附
纤维
解吸
双金属片
蒸发
水分
纳米技术
复合材料
化学
有机化学
气象学
金属
物理
工程类
冶金
作者
Fan Luo,Xianghui Liang,Weicheng Chen,Sai Kishore Ravi,Shuangfeng Wang,Xuenong Gao,Zhengguo Zhang,Yutang Fang
出处
期刊:Water Research
[Elsevier]
日期:2024-08-01
卷期号:259: 121872-121872
被引量:1
标识
DOI:10.1016/j.watres.2024.121872
摘要
Conversion of atmospheric water to sustainable and clean freshwater resources through MOF-based adsorbent has great potential for the renewable environmental industry. However, its daily water production is hampered by susceptibility to agglomeration, slow water evaporation efficiency, and limited water-harvesting capacity. Herein, a solar-assisted bimetallic MOF (BMOF)-derived fiber component that surmounts these limitations and exhibits both optimized water-collect capacity and short adsorption-desorption period is proposed. The proposed strategy involves utilizing bottom-up interface-induced assembly between carboxylated multi-walled carbon nanotube and hygroscopic BMOF on a multi-ply glass fiber support. The designed BMOF (MIL-100(Fe,Al)-3) skeleton constructed using bimetallic-node defect engineering exhibits a high specific surface area (1,535.28 m2/g) and pore volume (0.76 cm3/g), thereby surpassing the parent MOFs and other reported MOFs in capturing moisture. Benefiting from the hierarchical structure of fiber rods and the solar-driven self-heating interface of photothermal layer, the customized BMOF crystals realize efficient loading and optimized water adsorption-desorption kinetics. As a result, the resultant fiber components achieve six adsorption-desorption cycles per day and an impressive water collection of 1.45 g/g/day under medium-high humidity outdoor conditions. Therefore, this work will provide new ideas for optimizing the daily yield of atmospheric water harvesting techniques.
科研通智能强力驱动
Strongly Powered by AbleSci AI