Fault Diagnosis of Industrial Robot Based on Multi-Source Data Fusion and Channel Attention Convolutional Neural Networks

计算机科学 卷积神经网络 人工智能 断层(地质) 传感器融合 机器人 频道(广播) 模式识别(心理学) 机器学习 计算机网络 地震学 地质学
作者
Yiwen Zhang,Zihao Zang,Xinming Zhang,Linsen Song,Zhenglei Yu,Yitian Wang,Gao Yan,L Wang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 82247-82260 被引量:2
标识
DOI:10.1109/access.2024.3406433
摘要

Industrial robots are prone to failure due to harsh working environments, which affects movement accuracy. The fault diagnosis of industrial robots has become an indispensable part of robot collaborative maintenance in intelligent manufacturing. Most existing diagnostic methods only use a single data source, and the diagnostic accuracy will be affected due to signal acquisition errors and noise interference. This paper proposes a multi-source data fusion and channel attention convolutional neural network (MD-CA-CNN) for fault diagnosis of multi-joint industrial robots. The network takes the time domain data and time-frequency domain data of the vibration signal, torque signal, and current signal of the six joints of the robot as input. Then, we realize the diagnosis of the faults by using a Softmax Classifier layer after the two parts of feature extraction and feature fusion. In addition, a channel attention mechanism is developed. It acts on the two parts of feature extraction and feature fusion, respectively. It assigns weights to different source data and weights to time-domain and time-frequency domain features. Finally, we established a test bench to compare the proposed method with the deep learning algorithm that only uses multi-data source fusion, the deep learning algorithm that only uses a single data source, and the commonly used machine learning algorithm. The results show that the MD-CA-CNN model proposed in this paper has the highest accuracy and stability, reaching 95.8% ± 0.39%, which verifies the method's effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lingling发布了新的文献求助10
1秒前
1秒前
Devil77完成签到,获得积分10
3秒前
JMchiefEditor完成签到,获得积分10
5秒前
摇阿瑶完成签到,获得积分10
5秒前
dddsss完成签到,获得积分10
7秒前
8秒前
eternal完成签到,获得积分20
11秒前
13秒前
eternal发布了新的文献求助10
14秒前
永远少年完成签到,获得积分10
16秒前
17秒前
苏满天发布了新的文献求助30
17秒前
18秒前
lingling发布了新的文献求助10
19秒前
yiling发布了新的文献求助30
20秒前
乐乐应助csuxxm采纳,获得10
20秒前
han给han的求助进行了留言
22秒前
23秒前
24秒前
苏卿应助王漂亮采纳,获得10
26秒前
xixixixixixi完成签到,获得积分10
26秒前
燕海雪完成签到,获得积分10
26秒前
Pauline发布了新的文献求助30
27秒前
吃鸡蛋不吃鸡蛋黄完成签到,获得积分10
27秒前
梦想家完成签到,获得积分10
27秒前
mo完成签到,获得积分10
28秒前
aidiresi发布了新的文献求助10
28秒前
与尔发布了新的文献求助10
29秒前
Allen发布了新的文献求助10
30秒前
30秒前
调皮万宝路完成签到,获得积分10
30秒前
一枚青椒发布了新的文献求助30
31秒前
31秒前
领导范儿应助yiling采纳,获得10
31秒前
农村拓哉完成签到,获得积分10
31秒前
领导范儿应助liyuanmiao采纳,获得10
34秒前
35秒前
yangching完成签到,获得积分10
36秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161774
求助须知:如何正确求助?哪些是违规求助? 2813049
关于积分的说明 7898270
捐赠科研通 2472043
什么是DOI,文献DOI怎么找? 1316316
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129