Multiple Riemannian Kernel Hashing for Large-scale Image Set Classification and Retrieval

核(代数) 计算机科学 模式识别(心理学) 散列函数 图像检索 比例(比率) 人工智能 集合(抽象数据类型) 图像处理 数学 图像(数学) 物理 计算机安全 组合数学 量子力学 程序设计语言
作者
Xiaobo Shen,Wei Wu,Xiaxin Wang,Yuhui Zheng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4261-4273 被引量:2
标识
DOI:10.1109/tip.2024.3419414
摘要

Conventional image set methods typically learn from small to medium-sized image set datasets. However, when applied to large-scale image set applications such as classification and retrieval, they face two primary challenges: 1) effectively modeling complex image sets; and 2) efficiently performing tasks. To address the above issues, we propose a novel Multiple Riemannian Kernel Hashing (MRKH) method that leverages the powerful capabilities of Riemannian manifold and Hashing on effective and efficient image set representation. MRKH considers multiple heterogeneous Riemannian manifolds to represent each image set. It introduces a multiple kernel learning framework designed to effectively combine statistics from multiple manifolds, and constructs kernels by selecting a small set of anchor points, enabling efficient scalability for large-scale applications. In addition, MRKH further exploits inter- and intra-modal semantic structure to enhance discrimination. Instead of employing continuous feature to represent each image set, MRKH suggests learning hash code for each image set, thereby achieving efficient computation and storage. We present an iterative algorithm with theoretical convergence guarantee to optimize MRKH, and the computational complexity is linear with the size of dataset. Extensive experiments on five image set benchmark datasets including three large-scale ones demonstrate the proposed method outperforms state-of-the-arts in accuracy and efficiency particularly in large-scale image set classification and retrieval.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
冷傲的访曼完成签到,获得积分10
1秒前
尊敬的含之吴红多完成签到,获得积分20
1秒前
无情发卡应助zui采纳,获得30
1秒前
星辰大海应助qdange采纳,获得10
2秒前
mingyahaoa完成签到,获得积分10
2秒前
小章鱼完成签到,获得积分10
2秒前
小马甲应助chenu采纳,获得10
2秒前
3秒前
拼搏迎梦完成签到,获得积分10
3秒前
tianxiemouzi发布了新的文献求助10
3秒前
3秒前
3秒前
哇咔咔完成签到 ,获得积分10
3秒前
李静完成签到,获得积分10
3秒前
yiyi发布了新的文献求助10
3秒前
Zircon完成签到 ,获得积分10
4秒前
4秒前
阔达的扬完成签到,获得积分10
4秒前
4秒前
zzh完成签到,获得积分10
4秒前
寻123发布了新的文献求助10
5秒前
李健的小迷弟应助Fangyuan采纳,获得10
5秒前
5秒前
illusion完成签到,获得积分10
6秒前
Faceman发布了新的文献求助10
6秒前
万能图书馆应助蓦然采纳,获得10
6秒前
Silieze完成签到,获得积分10
6秒前
7秒前
香蕉觅云应助FXH采纳,获得10
7秒前
独特的初彤完成签到 ,获得积分10
7秒前
7秒前
小明发布了新的文献求助20
7秒前
嘻嘻哈哈应助yun采纳,获得10
7秒前
8秒前
fukase发布了新的文献求助10
8秒前
大虫完成签到,获得积分10
8秒前
8秒前
大个应助郑雯予采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257018
求助须知:如何正确求助?哪些是违规求助? 4419147
关于积分的说明 13754974
捐赠科研通 4292341
什么是DOI,文献DOI怎么找? 2355479
邀请新用户注册赠送积分活动 1351865
关于科研通互助平台的介绍 1312669