亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiple Riemannian Kernel Hashing for Large-scale Image Set Classification and Retrieval

核(代数) 计算机科学 模式识别(心理学) 散列函数 图像检索 比例(比率) 人工智能 集合(抽象数据类型) 图像处理 数学 图像(数学) 计算机安全 量子力学 组合数学 物理 程序设计语言
作者
Xiaobo Shen,Wei Wu,Xiaxin Wang,Yuhui Zheng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4261-4273
标识
DOI:10.1109/tip.2024.3419414
摘要

Conventional image set methods typically learn from small to medium-sized image set datasets. However, when applied to large-scale image set applications such as classification and retrieval, they face two primary challenges: 1) effectively modeling complex image sets; and 2) efficiently performing tasks. To address the above issues, we propose a novel Multiple Riemannian Kernel Hashing (MRKH) method that leverages the powerful capabilities of Riemannian manifold and Hashing on effective and efficient image set representation. MRKH considers multiple heterogeneous Riemannian manifolds to represent each image set. It introduces a multiple kernel learning framework designed to effectively combine statistics from multiple manifolds, and constructs kernels by selecting a small set of anchor points, enabling efficient scalability for large-scale applications. In addition, MRKH further exploits inter- and intra-modal semantic structure to enhance discrimination. Instead of employing continuous feature to represent each image set, MRKH suggests learning hash code for each image set, thereby achieving efficient computation and storage. We present an iterative algorithm with theoretical convergence guarantee to optimize MRKH, and the computational complexity is linear with the size of dataset. Extensive experiments on five image set benchmark datasets including three large-scale ones demonstrate the proposed method outperforms state-of-the-arts in accuracy and efficiency particularly in large-scale image set classification and retrieval.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕孤单的幼荷完成签到 ,获得积分10
6秒前
可爱的函函应助lu采纳,获得10
8秒前
量子星尘发布了新的文献求助10
11秒前
17秒前
21秒前
muasa发布了新的文献求助10
32秒前
36秒前
玩命的大侠完成签到,获得积分10
48秒前
52秒前
善良的冰颜完成签到 ,获得积分10
1分钟前
健壮的花瓣完成签到 ,获得积分10
1分钟前
yx_cheng应助科研通管家采纳,获得10
1分钟前
1分钟前
Ava应助CMY采纳,获得10
1分钟前
Sandy举报yan求助涉嫌违规
1分钟前
Qian完成签到 ,获得积分10
1分钟前
Kashing完成签到,获得积分10
1分钟前
小透明发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
Sandy举报卷筒洗衣机求助涉嫌违规
2分钟前
sleet完成签到 ,获得积分10
2分钟前
2分钟前
摇摇奶昔完成签到,获得积分20
2分钟前
Everything发布了新的文献求助10
2分钟前
田様应助科研通管家采纳,获得10
3分钟前
yx_cheng应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助200
3分钟前
Everything完成签到,获得积分10
4分钟前
像个间谍发布了新的文献求助10
4分钟前
4分钟前
清风明月完成签到 ,获得积分10
4分钟前
比比谁的速度快应助Zephyr采纳,获得200
5分钟前
yx_cheng应助科研通管家采纳,获得10
5分钟前
5分钟前
跳跃毒娘发布了新的文献求助10
5分钟前
充电宝应助风中的飞机采纳,获得10
5分钟前
尘远知山静完成签到 ,获得积分10
5分钟前
haprier完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008151
求助须知:如何正确求助?哪些是违规求助? 3547956
关于积分的说明 11298612
捐赠科研通 3282865
什么是DOI,文献DOI怎么找? 1810219
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188