Multiple Riemannian Kernel Hashing for Large-scale Image Set Classification and Retrieval

核(代数) 计算机科学 模式识别(心理学) 散列函数 图像检索 比例(比率) 人工智能 集合(抽象数据类型) 图像处理 数学 图像(数学) 计算机安全 量子力学 组合数学 物理 程序设计语言
作者
Xiaobo Shen,Wei Wu,Xiaxin Wang,Yuhui Zheng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4261-4273 被引量:2
标识
DOI:10.1109/tip.2024.3419414
摘要

Conventional image set methods typically learn from small to medium-sized image set datasets. However, when applied to large-scale image set applications such as classification and retrieval, they face two primary challenges: 1) effectively modeling complex image sets; and 2) efficiently performing tasks. To address the above issues, we propose a novel Multiple Riemannian Kernel Hashing (MRKH) method that leverages the powerful capabilities of Riemannian manifold and Hashing on effective and efficient image set representation. MRKH considers multiple heterogeneous Riemannian manifolds to represent each image set. It introduces a multiple kernel learning framework designed to effectively combine statistics from multiple manifolds, and constructs kernels by selecting a small set of anchor points, enabling efficient scalability for large-scale applications. In addition, MRKH further exploits inter- and intra-modal semantic structure to enhance discrimination. Instead of employing continuous feature to represent each image set, MRKH suggests learning hash code for each image set, thereby achieving efficient computation and storage. We present an iterative algorithm with theoretical convergence guarantee to optimize MRKH, and the computational complexity is linear with the size of dataset. Extensive experiments on five image set benchmark datasets including three large-scale ones demonstrate the proposed method outperforms state-of-the-arts in accuracy and efficiency particularly in large-scale image set classification and retrieval.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
天天快乐应助严天飞采纳,获得10
1秒前
1秒前
baqiuzunzhe发布了新的文献求助10
2秒前
孝顺的觅风完成签到 ,获得积分10
2秒前
3秒前
Cyuan发布了新的文献求助10
3秒前
JRZ完成签到,获得积分10
4秒前
4秒前
不想晚睡完成签到,获得积分10
4秒前
5秒前
Sylvia发布了新的文献求助50
5秒前
Lia_Yee完成签到,获得积分10
5秒前
6秒前
asdfqwer发布了新的文献求助10
6秒前
可爱的稚晴完成签到,获得积分20
6秒前
进击的PhD完成签到,获得积分10
7秒前
8秒前
单纯无声完成签到 ,获得积分10
8秒前
10秒前
西西弗斯完成签到,获得积分10
12秒前
李卓航发布了新的文献求助10
14秒前
领导范儿应助甜野采纳,获得10
14秒前
14秒前
16秒前
18秒前
19秒前
完美世界应助科研通管家采纳,获得10
19秒前
领导范儿应助科研通管家采纳,获得10
19秒前
领导范儿应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
好好应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
顾矜应助科研通管家采纳,获得10
20秒前
爆米花应助科研通管家采纳,获得10
20秒前
好好应助科研通管家采纳,获得10
20秒前
JamesPei应助科研通管家采纳,获得10
20秒前
完美世界应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716