七氟醚
斑马鱼
缺氧(环境)
蛋白激酶B
微管
化学
药理学
细胞生物学
医学
麻醉
信号转导
生物
生物化学
基因
氧气
有机化学
作者
Li Zhang,Mengsi Yang,Zongyi Wang,Dinggang Fan,Fang Shen,Xuezhu Zou,Xiaoyuan Zhang,Su Hu,Bing Hu,Xianwen Hu
标识
DOI:10.1016/j.biopha.2024.116693
摘要
Sevoflurane postconditioning has been shown to provide neuroprotection against cerebral hypoxia-ischemia injury, but the mechanisms remain elusive. Microtubule-associated protein 2 (MAP2) is implicated in early neuronal hypoxia-ischemia injury. This study aimed to investigate whether the neuroprotective effects of sevoflurane postconditioning are related to the Akt/GSK-3β pathway and its downstream target MAP2 in zebrafish hypoxia/reoxygenation (H/R) model. Sevoflurane postconditioning or GSK-3β inhibitor TDZD-8 were used to treat H/R zebrafish. The cerebral infarction, neuronal apoptosis, and mitochondrial changes were evaluated using TTC staining, TUNEL staining, and transmission electron microscopy, respectively. The distribution of MAP2 in the brain was determined by immunofluorescence imaging. The levels of Akt, p-Akt, GSK-3β, p-GSK-3β, and MAP2 proteins were evaluated by Western blotting. The neurobehavioral recovery of zebrafish was assessed based on optokinetic response behavior. Our results indicated that sevoflurane postconditioning and TDZD-8 significantly reduced the cerebral infarction area, suppressed cell apoptosis, and improved mitochondrial integrity in zebrafish subjected to H/R. Furthermore, sevoflurane postconditioning and TDZD-8 elevated the ratios of p-Akt/Akt and p-GSK-3β/GSK-3β. However, the neuroprotective effect of sevoflurane postconditioning was effectively abolished upon suppression of MAP2 expression. In conclusion, sevoflurane postconditioning ameliorated cerebral H/R injury and facilitated the restoration of neurobehavioral function through the activation of Akt/GSK-3β pathway and promotion of MAP2 expression. • Sevoflurane postconditioning attenuated cerebral infarction and apoptosis. • Sevoflurane postconditioning improved neuron mitochondrial morphology integrity. • Sevoflurane postconditioning promoted optokinetic response behavior recovery. • Sevoflurane neuroprotection was mediated by activating Akt/GSK-3β and promoting MAP2.
科研通智能强力驱动
Strongly Powered by AbleSci AI