Machine Learning-Assisted Optimization of Mixed Carbon Source Compositions for High-Performance Denitrification

反硝化 碳源 化学 碳纤维 化学工程 环境科学 计算机科学 工程类 生物化学 氮气 有机化学 算法 复合数
作者
Yuan Pan,Tian-Wei Hua,Rui-Zhe Sun,Yingying Fu,Zhichao Xiao,Jin Wang,Han‐Qing Yu
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:58 (28): 12498-12508 被引量:15
标识
DOI:10.1021/acs.est.4c01743
摘要

Appropriate mixed carbon sources have great potential to enhance denitrification efficiency and reduce operational costs in municipal wastewater treatment plants (WWTPs). However, traditional methods struggle to efficiently select the optimal mixture due to the variety of compositions. Herein, we developed a machine learning-assisted high-throughput method enabling WWTPs to rapidly identify and optimize mixed carbon sources. Taking a local WWTP as an example, a mixed carbon source denitrification data set was established via a high-throughput method and employed to train a machine learning model. The composition of carbon sources and the types of inoculated sludge served as input variables. The XGBoost algorithm was employed to predict the total nitrogen removal rate and microbial growth, thereby aiding in the assessment of the denitrification potential. The predicted carbon sources exhibited an enhanced denitrification potential over single carbon sources in both kinetic experiments and long-term reactor operations. Model feature analysis shows that the cumulative effect and interaction among individual carbon sources in a mixture significantly enhance the overall denitrification potential. Metagenomic analysis reveals that the mixed carbon sources increased the diversity and complexity of denitrifying bacterial ecological networks in WWTPs. This work offers an efficient method for WWTPs to optimize mixed carbon source compositions and provides new insights into the mechanism behind enhanced denitrification under a supply of multiple carbon sources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爱笑秀发完成签到,获得积分20
刚刚
踏实十八发布了新的文献求助30
刚刚
xx完成签到,获得积分20
刚刚
聪明无敌小腚宝完成签到,获得积分10
刚刚
cong1216发布了新的文献求助10
刚刚
wddx完成签到,获得积分10
刚刚
TTT完成签到 ,获得积分10
刚刚
刚刚
千跃应助斯文睫毛采纳,获得10
刚刚
ljn完成签到,获得积分10
刚刚
1秒前
1秒前
优雅含莲完成签到 ,获得积分10
1秒前
小丸子完成签到,获得积分10
1秒前
朵朵发布了新的文献求助10
1秒前
chenzhezhixp发布了新的文献求助10
1秒前
xtx发布了新的文献求助10
2秒前
鹿叽叽完成签到,获得积分10
2秒前
iNk应助stargazer采纳,获得10
3秒前
jiashan完成签到,获得积分10
3秒前
ding应助追寻荔枝采纳,获得10
3秒前
AZN发布了新的文献求助10
3秒前
shuo0976完成签到,获得积分10
4秒前
4秒前
在水一方应助雪见采纳,获得10
4秒前
roking发布了新的文献求助10
4秒前
那片叶子完成签到,获得积分10
4秒前
eric888应助MADKAI采纳,获得20
5秒前
万能图书馆应助MADKAI采纳,获得10
5秒前
CipherSage应助MADKAI采纳,获得20
5秒前
点点白帆发布了新的文献求助10
5秒前
酷波er应助MADKAI采纳,获得10
5秒前
华仔应助MADKAI采纳,获得10
5秒前
eric888应助MADKAI采纳,获得20
5秒前
十一十八应助MADKAI采纳,获得10
5秒前
916应助MADKAI采纳,获得10
5秒前
ding应助MADKAI采纳,获得10
5秒前
小马甲应助MADKAI采纳,获得10
5秒前
JamesPei应助忧伤的书白采纳,获得10
5秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950365
求助须知:如何正确求助?哪些是违规求助? 3495846
关于积分的说明 11078987
捐赠科研通 3226245
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800926