Machine Learning-Assisted Optimization of Mixed Carbon Source Compositions for High-Performance Denitrification

反硝化 碳源 化学 碳纤维 化学工程 环境科学 计算机科学 工程类 生物化学 氮气 有机化学 算法 复合数
作者
Yuan Pan,Tian-Wei Hua,Rui-Zhe Sun,Yingying Fu,Zhichao Xiao,Jin Wang,Han‐Qing Yu
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:58 (28): 12498-12508 被引量:9
标识
DOI:10.1021/acs.est.4c01743
摘要

Appropriate mixed carbon sources have great potential to enhance denitrification efficiency and reduce operational costs in municipal wastewater treatment plants (WWTPs). However, traditional methods struggle to efficiently select the optimal mixture due to the variety of compositions. Herein, we developed a machine learning-assisted high-throughput method enabling WWTPs to rapidly identify and optimize mixed carbon sources. Taking a local WWTP as an example, a mixed carbon source denitrification data set was established via a high-throughput method and employed to train a machine learning model. The composition of carbon sources and the types of inoculated sludge served as input variables. The XGBoost algorithm was employed to predict the total nitrogen removal rate and microbial growth, thereby aiding in the assessment of the denitrification potential. The predicted carbon sources exhibited an enhanced denitrification potential over single carbon sources in both kinetic experiments and long-term reactor operations. Model feature analysis shows that the cumulative effect and interaction among individual carbon sources in a mixture significantly enhance the overall denitrification potential. Metagenomic analysis reveals that the mixed carbon sources increased the diversity and complexity of denitrifying bacterial ecological networks in WWTPs. This work offers an efficient method for WWTPs to optimize mixed carbon source compositions and provides new insights into the mechanism behind enhanced denitrification under a supply of multiple carbon sources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妮妮完成签到 ,获得积分10
1秒前
1秒前
傲娇的凡旋应助spurs17采纳,获得10
1秒前
长情若魔完成签到,获得积分10
3秒前
XM完成签到,获得积分10
3秒前
3秒前
LQW发布了新的文献求助30
3秒前
大个应助Rrr采纳,获得10
3秒前
4秒前
5秒前
5秒前
7秒前
zfy完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
9秒前
w17638619025完成签到 ,获得积分20
10秒前
撒上咖啡应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
11秒前
菠萝吹雪应助科研通管家采纳,获得30
11秒前
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
11秒前
西内!卡Q因完成签到,获得积分10
12秒前
我是125应助www采纳,获得10
12秒前
小二郎应助鲜艳的棒棒糖采纳,获得10
12秒前
Zzzzzzzzzzz发布了新的文献求助10
12秒前
长情若魔发布了新的文献求助10
12秒前
酷酷酷完成签到,获得积分10
13秒前
13秒前
BaekHyun发布了新的文献求助10
14秒前
xuex1发布了新的文献求助10
14秒前
孙皓然完成签到 ,获得积分10
15秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808