Machine Learning-Assisted Optimization of Mixed Carbon Source Compositions for High-Performance Denitrification

反硝化 碳源 化学 碳纤维 化学工程 环境科学 计算机科学 工程类 生物化学 氮气 有机化学 算法 复合数
作者
Yuan Pan,Tian-Wei Hua,Rui-Zhe Sun,Yingying Fu,Zhichao Xiao,Jin Wang,Han‐Qing Yu
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:58 (28): 12498-12508
标识
DOI:10.1021/acs.est.4c01743
摘要

Appropriate mixed carbon sources have great potential to enhance denitrification efficiency and reduce operational costs in municipal wastewater treatment plants (WWTPs). However, traditional methods struggle to efficiently select the optimal mixture due to the variety of compositions. Herein, we developed a machine learning-assisted high-throughput method enabling WWTPs to rapidly identify and optimize mixed carbon sources. Taking a local WWTP as an example, a mixed carbon source denitrification data set was established via a high-throughput method and employed to train a machine learning model. The composition of carbon sources and the types of inoculated sludge served as input variables. The XGBoost algorithm was employed to predict the total nitrogen removal rate and microbial growth, thereby aiding in the assessment of the denitrification potential. The predicted carbon sources exhibited an enhanced denitrification potential over single carbon sources in both kinetic experiments and long-term reactor operations. Model feature analysis shows that the cumulative effect and interaction among individual carbon sources in a mixture significantly enhance the overall denitrification potential. Metagenomic analysis reveals that the mixed carbon sources increased the diversity and complexity of denitrifying bacterial ecological networks in WWTPs. This work offers an efficient method for WWTPs to optimize mixed carbon source compositions and provides new insights into the mechanism behind enhanced denitrification under a supply of multiple carbon sources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
66完成签到,获得积分20
4秒前
6秒前
7秒前
掌心发布了新的文献求助10
8秒前
9秒前
9秒前
酷波er应助九月三日采纳,获得10
10秒前
10秒前
panting发布了新的文献求助10
11秒前
12秒前
不懈奋进应助kieerw采纳,获得30
12秒前
研友_nPxRRn发布了新的文献求助10
13秒前
wwwwwnnnnn发布了新的文献求助10
15秒前
15秒前
麻烦~发布了新的文献求助30
18秒前
木南发布了新的文献求助10
18秒前
20秒前
东北三省完成签到,获得积分10
20秒前
20秒前
jackbauer发布了新的文献求助10
20秒前
暮霭沉沉应助胡楠采纳,获得10
21秒前
危机的道天关注了科研通微信公众号
22秒前
852应助科研通管家采纳,获得10
22秒前
Akim应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
完美世界应助科研通管家采纳,获得30
23秒前
加湿器应助科研通管家采纳,获得200
23秒前
斯文败类应助科研通管家采纳,获得10
23秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
23秒前
掌心完成签到,获得积分10
23秒前
23秒前
斯文败类应助研友_nPxRRn采纳,获得10
24秒前
26秒前
26秒前
暮霭沉沉应助木南采纳,获得10
28秒前
29秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155733
求助须知:如何正确求助?哪些是违规求助? 2806988
关于积分的说明 7871273
捐赠科研通 2465265
什么是DOI,文献DOI怎么找? 1312193
科研通“疑难数据库(出版商)”最低求助积分说明 629928
版权声明 601892