清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine Learning-Assisted Optimization of Mixed Carbon Source Compositions for High-Performance Denitrification

反硝化 碳源 化学 碳纤维 化学工程 环境科学 计算机科学 工程类 生物化学 氮气 有机化学 算法 复合数
作者
Yuan Pan,Tian-Wei Hua,Rui-Zhe Sun,Yingying Fu,Zhichao Xiao,Jin Wang,Han‐Qing Yu
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:58 (28): 12498-12508 被引量:36
标识
DOI:10.1021/acs.est.4c01743
摘要

Appropriate mixed carbon sources have great potential to enhance denitrification efficiency and reduce operational costs in municipal wastewater treatment plants (WWTPs). However, traditional methods struggle to efficiently select the optimal mixture due to the variety of compositions. Herein, we developed a machine learning-assisted high-throughput method enabling WWTPs to rapidly identify and optimize mixed carbon sources. Taking a local WWTP as an example, a mixed carbon source denitrification data set was established via a high-throughput method and employed to train a machine learning model. The composition of carbon sources and the types of inoculated sludge served as input variables. The XGBoost algorithm was employed to predict the total nitrogen removal rate and microbial growth, thereby aiding in the assessment of the denitrification potential. The predicted carbon sources exhibited an enhanced denitrification potential over single carbon sources in both kinetic experiments and long-term reactor operations. Model feature analysis shows that the cumulative effect and interaction among individual carbon sources in a mixture significantly enhance the overall denitrification potential. Metagenomic analysis reveals that the mixed carbon sources increased the diversity and complexity of denitrifying bacterial ecological networks in WWTPs. This work offers an efficient method for WWTPs to optimize mixed carbon source compositions and provides new insights into the mechanism behind enhanced denitrification under a supply of multiple carbon sources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忘忧Aquarius完成签到,获得积分10
2秒前
吕懿完成签到,获得积分10
2秒前
8秒前
balko完成签到,获得积分10
17秒前
19秒前
22秒前
22秒前
Wenqi发布了新的文献求助10
23秒前
1分钟前
1分钟前
1分钟前
张晟源发布了新的文献求助30
1分钟前
1分钟前
1分钟前
敏敏9813发布了新的文献求助10
1分钟前
TXZ06完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
滕皓轩完成签到 ,获得积分20
4分钟前
科研通AI6应助宝宝爱洗脚采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
Zoe发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助20
5分钟前
Zoe完成签到,获得积分10
5分钟前
5分钟前
6分钟前
虚幻念寒完成签到 ,获得积分10
6分钟前
卢莹完成签到,获得积分10
6分钟前
木乙完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482500
求助须知:如何正确求助?哪些是违规求助? 4583268
关于积分的说明 14389135
捐赠科研通 4512388
什么是DOI,文献DOI怎么找? 2472939
邀请新用户注册赠送积分活动 1459119
关于科研通互助平台的介绍 1432605