亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Vertebral compression fractures at abdominal CT: underdiagnosis, undertreatment and evaluation of an AI algorithm

医学 算法 回顾性队列研究 骨质疏松症 放射科 病历 队列 内科学 计算机科学
作者
Peder Wiklund,David Buchebner,Mats Geijer
出处
期刊:Journal of Bone and Mineral Research [Oxford University Press]
标识
DOI:10.1093/jbmr/zjae096
摘要

Abstract Vertebral compression fractures (VCFs) are common and indicate a high future risk of additional osteoporotic fractures. However, many VCFs are unreported by radiologists, and even if reported, many patients do not receive treatment. The purpose of the study was to evaluate a new artificial intelligence (AI) algorithm for the detection of VCFs and to assess the prevalence of reported and unreported VCFs. This retrospective cohort study included patients over age 60 yr with an abdominal CT between January 18, 2019 and January 18, 2020. Images and radiology reports were reviewed to identify reported and unreported VCFs, and the images were processed by an AI algorithm. For reported VCFs, the electronic health records were reviewed regarding subsequent osteoporosis screening and treatment. Totally, 1112 patients were included. Of these, 187 patients (16.8%) had a VCF, of which 62 had an incident VCF and 49 had a previously unknown prevalent VCF. The radiologist reporting rate of these VCFs was 30% (33/111). For moderate and severe (grade 2–3) VCF, the AI algorithm had 85.2% sensitivity, 92.3% specificity, 57.8% positive predictive value, and 98.1% negative predictive value. Three of 30 patients with reported VCFs started osteoporosis treatment within a year. The AI algorithm had high accuracy for the detection of VCFs and could be very useful in increasing the detection rate of VCFs, as there was a substantial underdiagnosis of VCFs. However, as undertreatment in reported cases was substantial, to fully realize the potential of AI, changes to the management pathway outside of the radiology department are imperative.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杀猪匠完成签到,获得积分10
11秒前
19秒前
杀猪匠关注了科研通微信公众号
23秒前
狮子座发布了新的文献求助10
25秒前
迷路向松完成签到,获得积分10
45秒前
两袖清风完成签到 ,获得积分10
48秒前
超级小飞侠完成签到 ,获得积分10
51秒前
赘婿应助杀猪匠采纳,获得10
52秒前
ppppppp_76完成签到 ,获得积分10
1分钟前
1分钟前
阿菜完成签到,获得积分10
1分钟前
杀猪匠发布了新的文献求助10
1分钟前
桐桐应助suki采纳,获得10
1分钟前
wangermazi完成签到,获得积分0
2分钟前
爆米花应助AWESOME Ling采纳,获得10
2分钟前
小蘑菇应助科研通管家采纳,获得10
2分钟前
吹皱一湖春水完成签到 ,获得积分10
2分钟前
2分钟前
AWESOME Ling发布了新的文献求助10
2分钟前
AWESOME Ling完成签到,获得积分10
2分钟前
2分钟前
suki发布了新的文献求助10
2分钟前
大胆的忆安完成签到 ,获得积分10
3分钟前
feiCheung完成签到 ,获得积分10
3分钟前
suki完成签到,获得积分10
3分钟前
沙脑完成签到 ,获得积分10
3分钟前
顺利的小蚂蚁完成签到,获得积分10
3分钟前
景景景发布了新的文献求助10
4分钟前
orixero应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI5应助景景景采纳,获得10
4分钟前
猫猫球完成签到 ,获得积分10
5分钟前
6分钟前
杨学清发布了新的文献求助10
6分钟前
no1lbt完成签到 ,获得积分10
6分钟前
大模型应助杨学清采纳,获得10
6分钟前
nicolaslcq完成签到,获得积分10
7分钟前
捉迷藏完成签到,获得积分10
7分钟前
火以敬完成签到,获得积分10
7分钟前
孙阳阳完成签到 ,获得积分10
8分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736630
求助须知:如何正确求助?哪些是违规求助? 3280593
关于积分的说明 10020088
捐赠科研通 2997293
什么是DOI,文献DOI怎么找? 1644517
邀请新用户注册赠送积分活动 782041
科研通“疑难数据库(出版商)”最低求助积分说明 749648