Unraveling the Hall-Petch to Inverse Hall-Petch Transition in Nanocrystalline High Entropy Alloys under Shock Loading

材料科学 纳米晶材料 凝聚态物理 晶界强化 反向 冶金 微观结构 几何学 纳米技术 晶界 物理 数学
作者
Wanghui Li,Meizhen Xiang,Zachary H. Aitken,Shuai Chen,Yilun Xu,Xinyu Yang,Qing‐Xiang Pei,Jian Wang,Xiaoyan Li,Guglielmo Vastola,Huajian Gao,Yong‐Wei Zhang
出处
期刊:International Journal of Plasticity [Elsevier BV]
卷期号:178: 104010-104010 被引量:28
标识
DOI:10.1016/j.ijplas.2024.104010
摘要

The transition from Hall-Petch (HP) to inverse Hall-Petch (IHP) behaviors associated with grain size reduction has been recognized for over two decades. However, the underlying mechanisms for such transition in high entropy alloys (HEAs) under dynamic loading, in which abundant deformation mechanisms could be activated either sequentially or simultaneously, remain unclear. Here, we investigate the HP to IHP transition in nanocrystalline CoCrFeMnNi HEAs under shock loading by examining their deformation mechanisms and flow stresses using large-scale molecular dynamics (MD) simulations. It is found that this transition is strongly dependent on the shock pressure as a result of the complex interplay among multiple competing deformation mechanisms, including the hardening mechanisms such as dislocations interactions and grain boundary (GB) blocking, as well as the softening mechanisms like phase formation, amorphization, GB thickening, and grain rotation. Moreover, there exists a critical shock pressure, which corresponds to the largest critical grain size for the HP-IHP transition. Below the critical shock pressure, the critical grain size increases with pressure due to a stronger hardening effect in grain interior (GIs), while above the critical pressure, the critical grain size first decreases and then undergoes a pressure-insensitive plateau before further decrease due to softening effects in GIs. A theoretical model that includes different deformation mechanisms is proposed for the first time to capture the shock pressure-dependent HP-IHP transition. Our work provides valuable guidance for optimizing the grain size of nanocrystalline HEAs for applications involving dynamic loadings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汪咏完成签到,获得积分20
1秒前
xiaolu完成签到,获得积分10
1秒前
Panda关注了科研通微信公众号
1秒前
睿O宝宝O完成签到 ,获得积分10
1秒前
阿莹发布了新的文献求助10
2秒前
爱吃苹果和香蕉完成签到,获得积分10
2秒前
小刘完成签到 ,获得积分10
2秒前
4秒前
4秒前
汪咏发布了新的文献求助10
6秒前
跳跃的安雁完成签到 ,获得积分10
6秒前
ajun发布了新的文献求助10
7秒前
7秒前
阿莹完成签到,获得积分10
8秒前
8秒前
所所应助木易光军采纳,获得10
8秒前
9秒前
斯文初翠完成签到 ,获得积分10
9秒前
甜美的尔岚完成签到 ,获得积分10
9秒前
10秒前
10秒前
Eternal完成签到 ,获得积分10
10秒前
wt发布了新的文献求助20
12秒前
rosyw发布了新的文献求助10
12秒前
霸气的小土豆完成签到 ,获得积分10
12秒前
王缪芸发布了新的文献求助10
13秒前
lll完成签到 ,获得积分10
13秒前
蒲琪完成签到,获得积分10
13秒前
ningwu发布了新的文献求助10
14秒前
梁小雨完成签到 ,获得积分10
14秒前
万能图书馆应助DavidShaw采纳,获得10
15秒前
是danoo发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助30
19秒前
活力妙芙完成签到 ,获得积分10
19秒前
serapy完成签到,获得积分10
19秒前
20秒前
大个应助焦恩俊采纳,获得10
21秒前
酷波er应助执着皮皮虾采纳,获得10
21秒前
小叶子发布了新的文献求助10
21秒前
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5114705
求助须知:如何正确求助?哪些是违规求助? 4321984
关于积分的说明 13467476
捐赠科研通 4153626
什么是DOI,文献DOI怎么找? 2275948
邀请新用户注册赠送积分活动 1277982
关于科研通互助平台的介绍 1215920