Unraveling the Hall-Petch to Inverse Hall-Petch Transition in Nanocrystalline High Entropy Alloys under Shock Loading

材料科学 纳米晶材料 凝聚态物理 晶界强化 反向 冶金 微观结构 几何学 纳米技术 晶界 物理 数学
作者
Wanghui Li,Meizhen Xiang,Zachary H. Aitken,Shuai Chen,Yilun Xu,Xinyu Yang,Qing‐Xiang Pei,Jian Wang,Xiaoyan Li,Guglielmo Vastola,Huajian Gao,Yong‐Wei Zhang
出处
期刊:International Journal of Plasticity [Elsevier]
卷期号:178: 104010-104010 被引量:5
标识
DOI:10.1016/j.ijplas.2024.104010
摘要

The transition from Hall-Petch (HP) to inverse Hall-Petch (IHP) behaviors associated with grain size reduction has been recognized for over two decades. However, the underlying mechanisms for such transition in high entropy alloys (HEAs) under dynamic loading, in which abundant deformation mechanisms could be activated either sequentially or simultaneously, remain unclear. Here, we investigate the HP to IHP transition in nanocrystalline CoCrFeMnNi HEAs under shock loading by examining their deformation mechanisms and flow stresses using large-scale molecular dynamics (MD) simulations. It is found that this transition is strongly dependent on the shock pressure as a result of the complex interplay among multiple competing deformation mechanisms, including the hardening mechanisms such as dislocations interactions and grain boundary (GB) blocking, as well as the softening mechanisms like phase formation, amorphization, GB thickening, and grain rotation. Moreover, there exists a critical shock pressure, which corresponds to the largest critical grain size for the HP-IHP transition. Below the critical shock pressure, the critical grain size increases with pressure due to a stronger hardening effect in grain interior (GIs), while above the critical pressure, the critical grain size first decreases and then undergoes a pressure-insensitive plateau before further decrease due to softening effects in GIs. A theoretical model that includes different deformation mechanisms is proposed for the first time to capture the shock pressure-dependent HP-IHP transition. Our work provides valuable guidance for optimizing the grain size of nanocrystalline HEAs for applications involving dynamic loadings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐徐完成签到,获得积分10
刚刚
1秒前
1秒前
haku完成签到,获得积分10
3秒前
可爱的函函应助laodie采纳,获得10
5秒前
Singularity应助忆楠采纳,获得10
6秒前
7秒前
请叫我风吹麦浪应助PengHu采纳,获得30
8秒前
jjjjjj完成签到,获得积分10
8秒前
凝子老师发布了新的文献求助10
10秒前
10秒前
橙子fy16_发布了新的文献求助10
12秒前
cookie完成签到,获得积分10
12秒前
柒柒的小熊完成签到,获得积分10
13秒前
13秒前
Hello应助萌之痴痴采纳,获得10
14秒前
hahaer完成签到,获得积分10
16秒前
领导范儿应助失眠虔纹采纳,获得10
17秒前
18秒前
Owen应助凝子老师采纳,获得10
21秒前
21秒前
南宫炽滔完成签到 ,获得积分10
23秒前
23秒前
丘比特应助飞羽采纳,获得10
24秒前
沙拉发布了新的文献求助10
24秒前
25秒前
26秒前
椰子糖完成签到 ,获得积分10
27秒前
27秒前
ZHU完成签到,获得积分10
28秒前
阳阳发布了新的文献求助10
29秒前
Raymond应助雪山飞龙采纳,获得10
29秒前
kk发布了新的文献求助10
30秒前
30秒前
31秒前
31秒前
31秒前
32秒前
35秒前
果果瑞宁发布了新的文献求助10
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849