Timely ICU Outcome Prediction Utilizing Stochastic Signal Analysis and Machine Learning Techniques with Readily Available Vital Sign Data

计算机科学 边距(机器学习) 人工智能 生命体征 机器学习 重症监护 医疗保健 特征提取 深度学习 特征(语言学) 结果(博弈论) 数据挖掘 医学 重症监护医学 数学 数理经济学 语言学 哲学 外科 经济 经济增长
作者
Shaodong Wang,Yiqun Jiang,Qing Li,W Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (9): 5587-5599
标识
DOI:10.1109/jbhi.2024.3416039
摘要

The ICU is a specialized hospital department that offers critical care to patients at high risk. The massive burden of ICU-requiring care requires accurate and timely ICU outcome predictions for alleviating the economic and healthcare burdens imposed by critical care needs. Existing research faces challenges such as feature extraction difficulties, low accuracy, and resource-intensive features. Some studies have explored deep learning models that utilize raw clinical inputs. However, these models are considered non-interpretable black boxes, which prevents their wide application. The objective of the study is to develop a new method using stochastic signal analysis and machine learning techniques to effectively extract features with strong predictive power from ICU patients' real-time time series of vital signs for accurate and timely ICU outcome prediction. The results show the proposed method extracted meaningful features and outperforms baseline methods, including APACHE IV (AUC = 0.750), deep learning-based models (AUC = 0.732, 0.712, 0.698, 0.722), and statistical feature classification methods (AUC = 0.765) by a large margin (AUC = 0.869). The proposed method has clinical, management, and administrative implications since it enables healthcare professionals to identify deviations from prognostications timely and accurately and, therefore, to conduct proper interventions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助xiaolaoshuboshi采纳,获得10
刚刚
刚刚
1秒前
尧凯发布了新的文献求助20
1秒前
mlty00发布了新的文献求助10
2秒前
Z1070741749完成签到,获得积分10
2秒前
zh完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
2秒前
斯文败类应助往往小陈采纳,获得10
3秒前
DQ完成签到 ,获得积分10
3秒前
阿钱完成签到,获得积分10
3秒前
5秒前
5秒前
万能图书馆应助逃出生天采纳,获得10
5秒前
5秒前
6秒前
yanghe完成签到,获得积分10
6秒前
6秒前
caterpillar完成签到,获得积分10
6秒前
叶子发布了新的文献求助10
6秒前
大方鹤完成签到 ,获得积分10
6秒前
6秒前
LMF完成签到 ,获得积分10
6秒前
曦9423发布了新的文献求助10
7秒前
7秒前
壮观醉香完成签到,获得积分20
7秒前
李佳璐完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
wy发布了新的文献求助10
8秒前
沧海静音发布了新的文献求助10
8秒前
沉迷学术无法自拔完成签到,获得积分10
8秒前
善学以致用应助浮浮世世采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519632
求助须知:如何正确求助?哪些是违规求助? 4611732
关于积分的说明 14529813
捐赠科研通 4549100
什么是DOI,文献DOI怎么找? 2492759
邀请新用户注册赠送积分活动 1473857
关于科研通互助平台的介绍 1445710