Timely ICU Outcome Prediction Utilizing Stochastic Signal Analysis and Machine Learning Techniques with Readily Available Vital Sign Data

计算机科学 边距(机器学习) 人工智能 生命体征 机器学习 重症监护 医疗保健 特征提取 深度学习 特征(语言学) 结果(博弈论) 数据挖掘 医学 重症监护医学 数学 数理经济学 语言学 哲学 外科 经济 经济增长
作者
Shaodong Wang,Yiqun Jiang,Qing Li,W Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (9): 5587-5599
标识
DOI:10.1109/jbhi.2024.3416039
摘要

The ICU is a specialized hospital department that offers critical care to patients at high risk. The massive burden of ICU-requiring care requires accurate and timely ICU outcome predictions for alleviating the economic and healthcare burdens imposed by critical care needs. Existing research faces challenges such as feature extraction difficulties, low accuracy, and resource-intensive features. Some studies have explored deep learning models that utilize raw clinical inputs. However, these models are considered non-interpretable black boxes, which prevents their wide application. The objective of the study is to develop a new method using stochastic signal analysis and machine learning techniques to effectively extract features with strong predictive power from ICU patients' real-time time series of vital signs for accurate and timely ICU outcome prediction. The results show the proposed method extracted meaningful features and outperforms baseline methods, including APACHE IV (AUC = 0.750), deep learning-based models (AUC = 0.732, 0.712, 0.698, 0.722), and statistical feature classification methods (AUC = 0.765) by a large margin (AUC = 0.869). The proposed method has clinical, management, and administrative implications since it enables healthcare professionals to identify deviations from prognostications timely and accurately and, therefore, to conduct proper interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助娇气的伟宸采纳,获得10
2秒前
Jinyi发布了新的文献求助10
2秒前
xjcy应助管道工采纳,获得10
4秒前
南望完成签到,获得积分10
6秒前
传奇3应助光亮向露采纳,获得10
7秒前
神说要有光完成签到 ,获得积分10
8秒前
8秒前
xjcy应助东郭雁梅采纳,获得10
11秒前
某宁发布了新的文献求助10
11秒前
wow发布了新的文献求助10
12秒前
科研通AI2S应助光亮的向松采纳,获得10
13秒前
科研通AI2S应助1117采纳,获得10
13秒前
聪仔应助西贝采纳,获得20
14秒前
科研通AI2S应助火枪手采纳,获得10
15秒前
October完成签到 ,获得积分10
16秒前
17秒前
樂酉完成签到 ,获得积分10
17秒前
19秒前
21秒前
tly发布了新的文献求助10
22秒前
愉快若剑发布了新的文献求助10
22秒前
66完成签到 ,获得积分10
23秒前
香蕉觅云应助科研通管家采纳,获得10
23秒前
爆米花应助科研通管家采纳,获得10
23秒前
Jasper应助科研通管家采纳,获得10
23秒前
23秒前
情怀应助科研通管家采纳,获得10
23秒前
英姑应助科研通管家采纳,获得30
23秒前
一一应助科研通管家采纳,获得30
24秒前
852应助科研通管家采纳,获得10
24秒前
xjcy应助科研通管家采纳,获得10
24秒前
香蕉觅云应助科研通管家采纳,获得10
24秒前
orixero应助科研通管家采纳,获得10
24秒前
FashionBoy应助科研通管家采纳,获得10
24秒前
24秒前
神勇秋白完成签到,获得积分0
24秒前
一一应助科研通管家采纳,获得30
24秒前
24秒前
田様应助科研通管家采纳,获得10
24秒前
李健应助科研通管家采纳,获得10
24秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212011
求助须知:如何正确求助?哪些是违规求助? 2860865
关于积分的说明 8126364
捐赠科研通 2526752
什么是DOI,文献DOI怎么找? 1360566
科研通“疑难数据库(出版商)”最低求助积分说明 643243
邀请新用户注册赠送积分活动 615469