Timely ICU Outcome Prediction Utilizing Stochastic Signal Analysis and Machine Learning Techniques with Readily Available Vital Sign Data

计算机科学 边距(机器学习) 人工智能 生命体征 机器学习 重症监护 医疗保健 特征提取 深度学习 特征(语言学) 结果(博弈论) 数据挖掘 医学 重症监护医学 哲学 经济 数理经济学 外科 经济增长 语言学 数学
作者
Shaodong Wang,Yiqun Jiang,Qing Li,W Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (9): 5587-5599
标识
DOI:10.1109/jbhi.2024.3416039
摘要

The ICU is a specialized hospital department that offers critical care to patients at high risk. The massive burden of ICU-requiring care requires accurate and timely ICU outcome predictions for alleviating the economic and healthcare burdens imposed by critical care needs. Existing research faces challenges such as feature extraction difficulties, low accuracy, and resource-intensive features. Some studies have explored deep learning models that utilize raw clinical inputs. However, these models are considered non-interpretable black boxes, which prevents their wide application. The objective of the study is to develop a new method using stochastic signal analysis and machine learning techniques to effectively extract features with strong predictive power from ICU patients' real-time time series of vital signs for accurate and timely ICU outcome prediction. The results show the proposed method extracted meaningful features and outperforms baseline methods, including APACHE IV (AUC = 0.750), deep learning-based models (AUC = 0.732, 0.712, 0.698, 0.722), and statistical feature classification methods (AUC = 0.765) by a large margin (AUC = 0.869). The proposed method has clinical, management, and administrative implications since it enables healthcare professionals to identify deviations from prognostications timely and accurately and, therefore, to conduct proper interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
nous完成签到,获得积分10
2秒前
11完成签到,获得积分10
3秒前
西西完成签到,获得积分10
3秒前
3秒前
Wang_ZiMo发布了新的文献求助10
4秒前
海绵宝宝的做饭铲完成签到,获得积分10
4秒前
4秒前
yuuka发布了新的文献求助10
5秒前
Wang驳回了李健应助
5秒前
微笑笑卉发布了新的文献求助10
6秒前
科研通AI6应助狂野大雄鹰采纳,获得10
8秒前
zwangxia完成签到,获得积分10
9秒前
10秒前
Xuz完成签到 ,获得积分10
11秒前
谢123完成签到 ,获得积分10
11秒前
11秒前
hahage完成签到,获得积分10
13秒前
13秒前
Akim应助科研通管家采纳,获得10
13秒前
tcf应助科研通管家采纳,获得10
13秒前
源源完成签到 ,获得积分10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得30
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
natmed应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
无花果应助paz_1010采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379192
求助须知:如何正确求助?哪些是违规求助? 4503605
关于积分的说明 14016048
捐赠科研通 4412336
什么是DOI,文献DOI怎么找? 2423761
邀请新用户注册赠送积分活动 1416652
关于科研通互助平台的介绍 1394188