亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Numerical Modeling of Transient Absorption in Hybrid Dual-Plasmonic Au/CuS Nanostructures

瞬态(计算机编程) 等离子体子 对偶(语法数字) 吸收(声学) 纳米结构 超快激光光谱学 材料科学 纳米技术 光电子学 物理 计算机科学 光学 复合材料 激光器 艺术 文学类 操作系统
作者
Atefeh Habibpourmoghadam,Wenyong Xie,Patrick Bessel,André Niebur,Artsiom Antanovich,Dirk Dorfs,Jannika Lauth,Antonio Calà Lesina
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.09712
摘要

Transient absorption in plasmonic materials has recently attracted attention of the chemistry and optics communities as a technique to understand dynamic processes and hot carriers generation on ultrafast timescales. In this context, hybrid Au/CuS nanostructures were recently investigated via ultrafast pump-probe transient absorption spectroscopy revealing an exotic dual-plasmonic behavior. Namely, the excitation of a localized surface plasmon resonance (LSPR) in Au (pump at 551 nm) or CuS (pump at 1051 nm), leads to a transient response in the counterpart. This phenomenon was attributed to Landau damping, which stems from hot carrier generation and injection mechanisms at the interface between the two materials. Here, we employ numerical modeling to further clarify the origin of such response in hybrid Au/CuS nanostructures. The geometry of the hybrid nanostructures is first investigated via steady-state simulations (only probe), confirming an UFO-shaped configuration. We provide clarification on the role of the size ratio between Au and CuS. Finally, we present the simulation of transient absorption in the pump-probe regime, which qualitatively replicates our experimental observations, thus identifying the plasmonic response modified via Landau damping as the main governing mechanism. Our numerical approach provides an important tool for the modeling of transient absorption spectroscopy and can support experimental research on dual-plasmonic materials for applications in spectroscopy, photocatalysis, thermoplasmonics, sensing, and energy harvesting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zoelir完成签到,获得积分10
2秒前
lingting完成签到,获得积分10
7秒前
英姑应助zhjl采纳,获得10
8秒前
9秒前
lingting发布了新的文献求助10
15秒前
gszy1975完成签到,获得积分10
37秒前
56秒前
矜持完成签到 ,获得积分10
56秒前
1分钟前
1分钟前
Pattis完成签到 ,获得积分10
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
国色不染尘完成签到,获得积分10
1分钟前
1分钟前
结实的半双完成签到,获得积分10
1分钟前
1分钟前
芙瑞完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Azlne完成签到,获得积分10
3分钟前
3分钟前
zhjl发布了新的文献求助10
3分钟前
3分钟前
滕皓轩完成签到 ,获得积分20
3分钟前
4分钟前
清脆语海发布了新的文献求助10
4分钟前
李爱国应助清脆语海采纳,获得10
5分钟前
5分钟前
5分钟前
MiaMia应助科研通管家采纳,获得30
5分钟前
科研通AI6应助科研通管家采纳,获得30
5分钟前
5分钟前
香蕉觅云应助zl采纳,获得10
5分钟前
zym完成签到 ,获得积分10
5分钟前
6分钟前
ZYP发布了新的文献求助10
6分钟前
深情安青应助朱羊羊采纳,获得10
7分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639739
求助须知:如何正确求助?哪些是违规求助? 4750173
关于积分的说明 15007280
捐赠科研通 4797915
什么是DOI,文献DOI怎么找? 2564024
邀请新用户注册赠送积分活动 1522896
关于科研通互助平台的介绍 1482574