钯
材料科学
掺杂剂
催化作用
氧还原反应
氧气
氮气
还原(数学)
无机化学
化学工程
纳米技术
兴奋剂
物理化学
有机化学
光电子学
化学
电极
电化学
几何学
数学
工程类
作者
Tiantian Zeng,Mang Niu,Binghui Xu,Weiyong Yuan,Chunxian Guo,Dapeng Cao,Chang Ming Li,Lian Ying Zhang,Xin Zhao
标识
DOI:10.1002/adfm.202408264
摘要
Abstract Doping light elements in Pt‐group metals is an effective approach toward improving their catalytic properties for oxygen reduction reaction (ORR). However, it is challenging to control dopant sites and to establish the correlation between the doping site and the catalytic property. In this paper, this success is demonstrated in controlling N doping sites in Pd metallene to manipulate electrocatalytic properties toward ORR. A Pd metallene sample with N dopant predominantly located at the atomic vacancy site (V‐N‐Pd metallene) exhibits two times higher mass activity in ORR than a Pd metallene sample with N dopant mainly occupied the interstitial site (I‐N‐Pd metallene). However, the I‐N‐Pd metallene shows improved durability than the V‐N‐Pd metallene, with only a 4 mV decay in half‐wave potential after 20 000 cycles. Computational calculation results reveal that the significantly enhanced ORR activity of V‐N‐Pd metallene arises from the atomic vacancy‐doped N, which modulates the electronic structure of Pd metallene to weaken the adsorption energy of intermediate O * species. This work provides guidelines for manipulating catalytic properties by controlling the doping sites of light elements in metal nanostructures.
科研通智能强力驱动
Strongly Powered by AbleSci AI