亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hypertension and OMICS, quo vadis

医学 现状 组学 生物信息学 市场经济 生物 经济
作者
Daniel Duprez,David R. Jacobs
出处
期刊:Journal of Hypertension [Ovid Technologies (Wolters Kluwer)]
卷期号:42 (8): 1307-1308
标识
DOI:10.1097/hjh.0000000000003765
摘要

Arterial hypertension is present in more than 1 billion people worldwide [1,2]. Hypertension is among the world's greatest health-economical burdens, leading to major target organ damage, cardiovascular disease, chronic kidney disease, dementia and death. More sophisticated blood pressure (BP) assessment tools have been developed. BP assessment is currently nearly always done by each healthcare provider at patient visits. Regular community BP check events now occur. However, in the majority of the population, the underlying pathogenesis of hypertension is still not completely discovered. For this reason, we still use the term 'Essential Hypertension' in more than in 90% of our patients. In this issue, Mischak et al. (pp. 000–000) studied the urinary peptidome in subsets of 4228 individuals without end-organ damage. The data were retrieved from the Human Urinary Proteome Database general population (discovery) or type 2 diabetic (validation) cohorts. Participants were divided based on SBP and DBP into hypertensive (SBP ≥140 mmHg and/or DBP ≥90 mmHg, N = 1004) and normotensive (SBP < 120 mmHg and DBP < 80mmHg without antihypertensive treatment, N = 283) groups. Differences in urinary peptide abundance between the two groups were further investigated using an external cohort (n = 210 hypertensive and 210 normotensive) of participants without end-organ damage, who were partially matched for age, BMI, estimated glomerular fraction rate, sex and the presence of diabetes. The association of the urinary peptides with BP was compared with peptide biomarkers of chronic diseases, and bioinformatic analyses were conducted to look into the underlying molecular mechanisms. Within a discovery-validation study design, the investigators determined consistent, significant peptide changes between hypertensive and normotensive participants. The investigators identified 83 hypertension-associated peptides of both collagen and noncollagen origin. They further analysed the data for correlations with the continuous standardized BP variables and in protein-protein interaction bioinformatics analyses. Unfortunately, the epidemiologic design leaves open questions, as some of the groups differ by over 30 years of age, people with diabetes are used as the validation set for a group of the mostly nondiabetic training set, and effects on the peptidome of antihypertensive medications were not considered. These aspects weaken the study and require cautious interpretation. Nevertheless, the peptidome data are well analysed biochemically and the data analyses provide important food for thought. Among the hypertension-associated peptides identified in this study, the collagen-derived peptides were the most prominent, because fibrosis is a key factor in the process of the arterial wall stiffening. The authors' major conclusion is that urinary peptidomics will not become a diagnostic tool, but can contribute to understanding early mechanisms in the new onset of essential hypertension. A few years ago, Arnett and Claas [3] wrote a primer on the genomics, transcriptomics, proteomics, and metabolomics of BP and hypertension. Omics approaches may lead to better diagnostics than currently exist, potentially predicting the severity of hypertension or target-organ damage associated with hypertension. Omics may personalize antihypertensive therapy for optimal response in the future. Proteomics is the study of the full complement of proteins produced or modified by a biological system. Omics methods might be used directly in the clinic to predict and stratify risk, aid diagnosis, and guide treatment decisions. Indirect clinical impacts include new clinical measures that derive from omics research but that do not involve omics measures in the clinical setting. Although even the indirect impact of omics in the context of BP and hypertension is currently negligible, it is via this route that omics may have the greatest potential impact. For example, given the potentially lifelong effect of genetic variants, genetic risk scores might be used to predict hypertension and related cardiovascular disease before it develops. Although no pharmacogenomics or pharmacometabolomics prescribing regimens for hypertension have been developed to date, this is another area of intense research and optimism [4]. Given that the pathogenesis of preeclampsia remains largely unknown and the diagnosis can be difficult, proteomic explorations of this hypertensive disorder may uncover novel pathophysiological mechanisms and diagnostic markers [5,6]. Application of omics in resistant hypertension may eventually be informative for better defining the pathological mechanisms of resistant hypertension. In-depth analysis of the pathophysiological mechanisms of hypertension and resistant hypertension is needed to identify more effective targets for controlling in these individuals' BP [7]. Resistant arterial hypertension is considered as difficult to control BP, in which multiple systems are in disarray, including vascular, cardiogenic, renal, neurogenic and endocrine mechanisms that interact in a complex but integrated manner to achieve BP homeostasis. Multiple proteins and metabolites are thought to regulate BP control, but these are deranged in resistant hypertension. As we move into the era of diagnostic omic approaches, this technique may assist us to interpret the omic results and provide us in-depth information about which pathways are not operating correctly, resulting in resistant hypertension and consequently in target organ damage, including cardiovascular and renal diseases. This insight in the pathobiology of BP control addressed by omics may lead to more selective antihypertensive therapy. This may result in regression of target damage and reduction in cardiovascular events and reduce the progression of chronic kidney disease. The kidney is not only an organ of key relevance to BP regulation and the development of hypertension, but it also acts as the tissue mediator of genetic predisposition to hypertension. The identity of kidney genes, pathways and related mechanisms underlying the genetic associations with BP has started to emerge through integration of genomics with kidney transcriptomics, epigenomics, and other omics [8]. Polygenic risk scores derived from genome-wide association studies and refined on kidney omics hold the promise of enhanced diagnostic prediction, whereas kidney omics-informed drug discovery is likely to contribute new therapeutic opportunities for hypertension and hypertension-mediated kidney damage. In conclusion, the future will tell us if omics applied to hypertension will reveal more pathological mechanisms, the mechanisms of target organ damage, specifically on the cardiovascular system, the kidney and the brain. There are still several needs to reveal in the omics domain, including the need for ethnic stratification. With the growing ageing population, omics will contribute to understanding beyond SBP increase in the elderly and the very elderly of age-related changes in the cardiovascular system, the kidney and brain function regarding cognitive decline and dementia. ACKNOWLEDGEMENTS Conflicts of interest There are no conflicts of interest.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助Yuanyuan采纳,获得10
6秒前
情怀应助华鹊鹊采纳,获得10
11秒前
15秒前
18秒前
清风明月完成签到 ,获得积分10
20秒前
Yuanyuan发布了新的文献求助10
22秒前
科研通AI6应助山渐青采纳,获得10
23秒前
虚心的小蝴蝶完成签到 ,获得积分10
27秒前
roro熊完成签到 ,获得积分10
30秒前
斯文败类应助薛建伟采纳,获得10
30秒前
31秒前
34秒前
zz发布了新的文献求助10
36秒前
37秒前
薛建伟完成签到,获得积分10
39秒前
汉堡包应助Mavis采纳,获得10
40秒前
薛建伟发布了新的文献求助10
42秒前
小毛完成签到,获得积分10
42秒前
七七完成签到 ,获得积分10
45秒前
zz完成签到,获得积分10
46秒前
Lliu完成签到,获得积分10
57秒前
完美世界应助yunshui采纳,获得10
59秒前
haprier完成签到 ,获得积分10
1分钟前
1分钟前
Yuanyuan发布了新的文献求助10
1分钟前
yunshui完成签到,获得积分10
1分钟前
1分钟前
yunshui发布了新的文献求助10
1分钟前
蚂蚁牙黑完成签到 ,获得积分10
1分钟前
山渐青发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
王小雨完成签到 ,获得积分10
1分钟前
尘远知山静完成签到 ,获得积分10
1分钟前
明理的蜗牛完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Mavis发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561327
求助须知:如何正确求助?哪些是违规求助? 4646464
关于积分的说明 14678529
捐赠科研通 4587747
什么是DOI,文献DOI怎么找? 2517212
邀请新用户注册赠送积分活动 1490496
关于科研通互助平台的介绍 1461362