亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Outcome of Patients With Cerebral Hemorrhage Using a Computed Tomography–Based Interpretable Radiomics Model: A Multicenter Study

医学 无线电技术 置信区间 放射科 队列 可解释性 回顾性队列研究 计算机断层摄影术 曲线下面积 核医学 内科学 人工智能 计算机科学
作者
Yun-Feng Yang,Hao Zhang,Xue-Lin Song,Chao Yang,Haijian Hu,Tian-Shu Fang,Zi-Hao Zhang,Xia Zhu,Yuanyuan Yang
出处
期刊:Journal of Computer Assisted Tomography [Ovid Technologies (Wolters Kluwer)]
被引量:1
标识
DOI:10.1097/rct.0000000000001627
摘要

Objective The aim of this study was to develop and validate an interpretable and highly generalizable multimodal radiomics model for predicting the prognosis of patients with cerebral hemorrhage. Methods This retrospective study involved 237 patients with cerebral hemorrhage from 3 medical centers, of which a training cohort of 186 patients (medical center 1) was selected and 51 patients from medical center 2 and medical center 3 were used as an external testing cohort. A total of 1762 radiomics features were extracted from nonenhanced computed tomography using Pyradiomics, and the relevant macroscopic imaging features and clinical factors were evaluated by 2 experienced radiologists. A radiomics model was established based on radiomics features using the random forest algorithm, and a radiomics-clinical model was further trained by combining radiomics features, clinical factors, and macroscopic imaging features. The performance of the models was evaluated using area under the curve (AUC), sensitivity, specificity, and calibration curves. Additionally, a novel SHAP (SHAPley Additive exPlanations) method was used to provide quantitative interpretability analysis for the optimal model. Results The radiomics-clinical model demonstrated superior predictive performance overall, with an AUC of 0.88 (95% confidence interval, 0.76–0.95; P < 0.01). Compared with the radiomics model (AUC, 0.85; 95% confidence interval, 0.72–0.94; P < 0.01), there was a 0.03 improvement in AUC. Furthermore, SHAP analysis revealed that the fusion features, rad score and clinical rad score, made significant contributions to the model's decision-making process. Conclusion Both proposed prognostic models for cerebral hemorrhage demonstrated high predictive levels, and the addition of macroscopic imaging features effectively improved the prognostic ability of the radiomics-clinical model. The radiomics-clinical model provides a higher level of predictive performance and model decision-making basis for the risk prognosis of cerebral hemorrhage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
中央发布了新的文献求助10
4秒前
zxq1996完成签到 ,获得积分10
9秒前
31秒前
Nemo发布了新的文献求助30
37秒前
1分钟前
Malmever发布了新的文献求助10
1分钟前
科目三应助黙宇循光采纳,获得10
1分钟前
1分钟前
黙宇循光发布了新的文献求助10
1分钟前
Jj7完成签到,获得积分10
1分钟前
lena完成签到,获得积分10
2分钟前
田様应助黙宇循光采纳,获得10
3分钟前
3分钟前
爆米花应助科研通管家采纳,获得10
3分钟前
黙宇循光发布了新的文献求助10
3分钟前
3分钟前
希勤发布了新的文献求助10
3分钟前
林才发布了新的文献求助10
3分钟前
3分钟前
chenxiang完成签到,获得积分10
3分钟前
上官若男应助希勤采纳,获得10
3分钟前
JamesPei应助黙宇循光采纳,获得10
4分钟前
4分钟前
安青兰完成签到 ,获得积分10
4分钟前
黙宇循光发布了新的文献求助10
4分钟前
Simon应助勤恳的汉堡采纳,获得20
5分钟前
研友_VZG7GZ应助科研通管家采纳,获得20
7分钟前
9分钟前
留下记忆完成签到 ,获得积分10
9分钟前
斯文的难破完成签到 ,获得积分10
9分钟前
FAN完成签到,获得积分10
11分钟前
牧沛凝完成签到 ,获得积分10
12分钟前
FAN发布了新的文献求助20
12分钟前
sa完成签到 ,获得积分10
13分钟前
红茸茸羊完成签到 ,获得积分10
15分钟前
隐形的涫完成签到,获得积分10
15分钟前
cy0824完成签到,获得积分10
16分钟前
17分钟前
材料虎发布了新的文献求助10
17分钟前
开放乐巧发布了新的文献求助10
17分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133970
求助须知:如何正确求助?哪些是违规求助? 2784836
关于积分的说明 7768714
捐赠科研通 2440219
什么是DOI,文献DOI怎么找? 1297295
科研通“疑难数据库(出版商)”最低求助积分说明 624920
版权声明 600792