检出限
化学
免疫分析
生物传感器
癌胚抗原
再现性
色谱法
涂层
纳米技术
生物医学工程
抗体
材料科学
医学
内科学
有机化学
癌症
免疫学
生物
生物化学
作者
Bei Wang,Lizhong Zhang,Gengyu Liang,Lingqin Meng,Yang Xu,Han Li,Zhiguo J. Song,Xiaonan Zhang,Zhangyan Li,Cuixia Guo,Tian Gu,Yonghong He
出处
期刊:Talanta
[Elsevier]
日期:2024-05-22
卷期号:277: 126302-126302
标识
DOI:10.1016/j.talanta.2024.126302
摘要
A label-free optical sandwich immunoassay sensor, utilizing weak value amplification and total internal reflection, was devised for real-time, high-sensitivity analysis and detection of low-concentration targets. 3D printed channels and sodium chloride solution were employed to ensure reproducibility, reliability, and stability of the measurements for calibration. The sandwich structure demonstrated enhanced responsiveness in the proposed optical biosensor through a comparative analysis of the direct assay and sandwich assay for detecting alpha-fetoprotein (AFP) at the same concentration. By optimizing the binding sequences of the coating antibody, target, and detection antibody in the sandwich method, a more suitable sandwich sensing approach based on weak value amplification was achieved. With this approach, the limit of detection (LOD) of 6.29 ng/mL (pM level) for AFP in PBS solution was achieved. AFP testing and regeneration experiments in human serum have proved the feasibility of our methods in detecting complex samples and the reusability of sensing chips. Additionally, the method demonstrated excellent selectivity for unpaired antigens. The efficacy of this methodology was evaluated by simultaneously detecting AFP, carcinoembryonic antigen (CEA), and CA15-3 on a singular sensor chip. In conclusion, the label-free sandwich immunoassay sensing scheme holds promise for advancing the proposed optical sensors based on weak value amplification in early diagnosis and prevention applications. Compared to other biomarker detection methods, it will be easier to promote in practical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI