Multiscale Channel Attention-Driven Graph Dynamic Fusion Learning Method for Robust Fault Diagnosis

稳健性(进化) 计算机科学 特征提取 融合 传感器融合 特征学习 模式识别(心理学) 人工智能 图形 数据挖掘 机器学习 理论计算机科学 基因 化学 生物化学 语言学 哲学
作者
Xin Zhang,Jie Liu,Xi Zhang,Yanglong Lu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (9): 11002-11013 被引量:2
标识
DOI:10.1109/tii.2024.3397401
摘要

Recently, research on multisensor fault diagnosis under noisy signals has gained significant attention. Due to various degrees of external interference and differences in sensor precision, the signal quality across different channels is inconsistent. These discrepancies are often neglected by fault diagnosis models and are also difficult to capture accurately. To solve this problem, this article introduces a multiscale channel attention-driven graph dynamic fusion network for mechanical fault diagnosis. It can mine the differences in importance among channels at multiple scales and calculate the channel attention weights to enhance the node feature representation. Additionally, a graph dynamic fusion framework for multisource features is proposed to process the subgraphs in parallel, which achieves a deep-level feature fusion and enables dynamic adjustments to the fusion process based on real-time model output. With the proposed graph dynamic reconstruction module, the reliability of the feature fusion process is further improved. In the experimental part, three noise distribution scenarios were simulated to validate the robustness of the proposed method on an axial flow pump and a gearbox. The comparative analysis with various state-of-the-art models and traditional deep learning models confirms the effectiveness and superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助啦啦啦啦啦采纳,获得10
刚刚
1秒前
细心的若风完成签到,获得积分10
2秒前
Vincent完成签到,获得积分10
3秒前
夕照古风完成签到,获得积分10
3秒前
bkagyin应助Dr.lee采纳,获得10
3秒前
FashionBoy应助夏夏采纳,获得10
3秒前
4秒前
chenjian完成签到 ,获得积分10
5秒前
情怀应助奔跑的蜗牛采纳,获得10
5秒前
5秒前
酸葡萄完成签到,获得积分10
5秒前
hu完成签到 ,获得积分10
6秒前
徐志豪完成签到,获得积分10
6秒前
11号迪西馅饼完成签到,获得积分10
7秒前
大马猴完成签到,获得积分10
11秒前
yxy999完成签到,获得积分10
11秒前
饿了就次爪爪完成签到 ,获得积分10
11秒前
12秒前
卡戎529完成签到 ,获得积分10
12秒前
12秒前
韩凡完成签到,获得积分20
12秒前
鲤鱼发布了新的文献求助10
12秒前
somin应助科研通管家采纳,获得10
13秒前
zpbb完成签到,获得积分10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
LYSM应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
somin应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
奔跑的蜗牛完成签到,获得积分10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
LYSM应助科研通管家采纳,获得10
13秒前
ding应助去玩儿采纳,获得10
13秒前
Loooong应助科研通管家采纳,获得20
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960556
求助须知:如何正确求助?哪些是违规求助? 3506870
关于积分的说明 11132558
捐赠科研通 3239151
什么是DOI,文献DOI怎么找? 1790050
邀请新用户注册赠送积分活动 872129
科研通“疑难数据库(出版商)”最低求助积分说明 803128