已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Graph Attention-Enhanced Knowledge Tracing: Unveiling Exercise Variability and Long-Term Dependencies

追踪 计算机科学 图形 二部图 期限(时间) 知识图 任务(项目管理) 人工智能 机器学习 理论计算机科学 量子力学 操作系统 物理 经济 管理
作者
Changjiu Qin,Wenxin Hu,Fangrui Du,Shijia Wang
标识
DOI:10.1109/iciet60671.2024.10542821
摘要

Knowledge tracing (KT) is vital for predicting students' mastery of knowledge concepts (KCs) based on interactive data from their practice sessions, facilitating adaptive learning resource recommendations. Despite the effectiveness of existing models, challenges persist, such as handling long-term dependencies in RNN-based models and real-time tracing of knowledge states across various KCs in attention mechanism-based models. Additionally, latent information within exercises and variations in difficulty levels among exercises under the same KC are often overlooked. To address these challenges, we propose a Graph Attention Mechanism-based Knowledge Tracing model (GAKT). Our approach involves constructing a bipartite graph to represent the exercise-KC relationship, integrating a difficulty vector into the interaction vectors of exercises, and utilizing Graph Attention Networks (GAT) to extract embeddings. Incorporating an attention mechanism, our model features a knowledge state revival module that captures long-term dependencies and provides real-time tracing of students' knowledge states. Extensive experiments demonstrate that GAKT outperforms the state-of-the-art graph-based KT model (GIKT) by an average of 2.3% in terms of AUC across three datasets, showing the importance of high-order information for deeper associations between KCs and exercises in the KT task. This study contributes to advancing knowledge tracing methodologies in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
传奇3应助罐装采纳,获得10
2秒前
Ache_Xu完成签到,获得积分10
4秒前
yvonnecao完成签到,获得积分10
5秒前
6秒前
6秒前
8秒前
马倩茹发布了新的文献求助10
10秒前
望仔牛奶完成签到,获得积分20
11秒前
乔乔汀发布了新的文献求助10
11秒前
Oracle应助yuyuyuyu采纳,获得30
14秒前
隐形曼青应助huluobo采纳,获得10
14秒前
医生完成签到,获得积分10
15秒前
17秒前
17秒前
今后应助望仔牛奶采纳,获得10
18秒前
19秒前
科研沸羊羊完成签到,获得积分10
20秒前
科研通AI5应助lvwenjie采纳,获得10
22秒前
冬瓜发布了新的文献求助10
22秒前
23秒前
24秒前
JamesPei应助春辞采纳,获得30
24秒前
香蕉觅云应助科研沸羊羊采纳,获得10
26秒前
小犁牛完成签到 ,获得积分10
27秒前
28秒前
echopussy应助lyh采纳,获得10
29秒前
Ava应助无情的宛儿采纳,获得10
30秒前
34秒前
赘婿应助自然的亦巧采纳,获得10
37秒前
乔乔兔发布了新的文献求助10
38秒前
41秒前
Orange应助罐装采纳,获得10
44秒前
46秒前
huluobo发布了新的文献求助10
46秒前
hm完成签到 ,获得积分10
47秒前
53秒前
lvwenjie发布了新的文献求助10
54秒前
HUYU666666发布了新的文献求助10
55秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725119
求助须知:如何正确求助?哪些是违规求助? 3270218
关于积分的说明 9965062
捐赠科研通 2985172
什么是DOI,文献DOI怎么找? 1637795
邀请新用户注册赠送积分活动 777724
科研通“疑难数据库(出版商)”最低求助积分说明 747164