亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Endpoint Acute Toxicity Assessment of Organic Compounds Using Large-Scale Machine Learning Modeling

比例(比率) 急性毒性 环境科学 计算机科学 人工智能 毒性 化学 有机化学 物理 量子力学
作者
Amirreza Daghighi,Gerardo M. Casañola‐Martín,Kweeni Iduoku,Hrvoje Kušić,Humberto González‐Díaz,Bakhtiyor Rasulev
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:58 (23): 10116-10127 被引量:22
标识
DOI:10.1021/acs.est.4c01017
摘要

In recent years, alternative animal testing methods such as computational and machine learning approaches have become increasingly crucial for toxicity testing. However, the complexity and scarcity of available biomedical data challenge the development of predictive models. Combining nonlinear machine learning together with multicondition descriptors offers a solution for using data from various assays to create a robust model. This work applies multicondition descriptors (MCDs) to develop a QSTR (Quantitative Structure-Toxicity Relationship) model based on a large toxicity data set comprising more than 80,000 compounds and 59 different end points (122,572 data points). The prediction capabilities of developed single-task multi-end point machine learning models as well as a novel data analysis approach with the use of Convolutional Neural Networks (CNN) are discussed. The results show that using MCDs significantly improves the model and using them with CNN-1D yields the best result (R2train = 0.93, R2ext = 0.70). Several structural features showed a high level of contribution to the toxicity, including van der Waals surface area (VSA), number of nitrogen-containing fragments (nN+), presence of S-P fragments, ionization potential, and presence of C-N fragments. The developed models can be very useful tools to predict the toxicity of various compounds under different conditions, enabling quick toxicity assessment of new compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一米六关注了科研通微信公众号
6秒前
9秒前
12秒前
洋葱发布了新的文献求助10
18秒前
一米六发布了新的文献求助10
24秒前
慕青应助牛油果采纳,获得10
27秒前
只谈风月完成签到,获得积分10
30秒前
腼腆的寒风完成签到 ,获得积分10
31秒前
34秒前
科研大王完成签到,获得积分10
34秒前
leoskrrr完成签到,获得积分10
38秒前
牛油果发布了新的文献求助10
39秒前
Han完成签到 ,获得积分10
49秒前
顾矜应助乐求知采纳,获得10
1分钟前
1分钟前
1分钟前
浮游漂漂应助科研通管家采纳,获得30
1分钟前
Xx完成签到 ,获得积分10
1分钟前
踏实的绣连完成签到 ,获得积分10
1分钟前
111发布了新的文献求助10
1分钟前
yr应助牛油果采纳,获得10
1分钟前
1分钟前
1分钟前
summer完成签到,获得积分20
1分钟前
1分钟前
dad0ng发布了新的文献求助10
1分钟前
1分钟前
小二郎应助dad0ng采纳,获得10
1分钟前
南风南下完成签到 ,获得积分10
1分钟前
Yu发布了新的文献求助10
2分钟前
zyyyy发布了新的文献求助10
2分钟前
2分钟前
jami-yu发布了新的文献求助10
2分钟前
jewel9完成签到,获得积分10
2分钟前
在水一方应助Yu采纳,获得10
2分钟前
明天一定早睡关注了科研通微信公众号
2分钟前
2分钟前
研友_LaOyQZ完成签到,获得积分10
2分钟前
A_123应助坦率的尔冬采纳,获得10
2分钟前
jami-yu完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763871
求助须知:如何正确求助?哪些是违规求助? 5545305
关于积分的说明 15405600
捐赠科研通 4899419
什么是DOI,文献DOI怎么找? 2635548
邀请新用户注册赠送积分活动 1583722
关于科研通互助平台的介绍 1538812