Multi-Endpoint Acute Toxicity Assessment of Organic Compounds Using Large-Scale Machine Learning Modeling

比例(比率) 急性毒性 环境科学 计算机科学 人工智能 毒性 化学 有机化学 物理 量子力学
作者
Amirreza Daghighi,Gerardo M. Casañola‐Martín,Kweeni Iduoku,Hrvoje Kušić,Humberto González-Dı́az,Bakhtiyor Rasulev
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:58 (23): 10116-10127 被引量:11
标识
DOI:10.1021/acs.est.4c01017
摘要

In recent years, alternative animal testing methods such as computational and machine learning approaches have become increasingly crucial for toxicity testing. However, the complexity and scarcity of available biomedical data challenge the development of predictive models. Combining nonlinear machine learning together with multicondition descriptors offers a solution for using data from various assays to create a robust model. This work applies multicondition descriptors (MCDs) to develop a QSTR (Quantitative Structure–Toxicity Relationship) model based on a large toxicity data set comprising more than 80,000 compounds and 59 different end points (122,572 data points). The prediction capabilities of developed single-task multi-end point machine learning models as well as a novel data analysis approach with the use of Convolutional Neural Networks (CNN) are discussed. The results show that using MCDs significantly improves the model and using them with CNN-1D yields the best result (R2train = 0.93, R2ext = 0.70). Several structural features showed a high level of contribution to the toxicity, including van der Waals surface area (VSA), number of nitrogen-containing fragments (nN+), presence of S–P fragments, ionization potential, and presence of C–N fragments. The developed models can be very useful tools to predict the toxicity of various compounds under different conditions, enabling quick toxicity assessment of new compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星夜完成签到,获得积分10
刚刚
刚刚
Amber完成签到,获得积分10
1秒前
2秒前
3秒前
li关闭了li文献求助
3秒前
4秒前
饿哭了塞完成签到 ,获得积分10
5秒前
Marya完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
轩辕山槐完成签到,获得积分10
8秒前
直率夜阑完成签到,获得积分10
8秒前
zhen发布了新的文献求助10
9秒前
10秒前
单单来迟完成签到,获得积分10
11秒前
DDD完成签到,获得积分10
12秒前
蕾娜发布了新的文献求助10
13秒前
jiangjiang完成签到,获得积分10
14秒前
15秒前
dyd发布了新的文献求助30
15秒前
桐桐应助695采纳,获得10
16秒前
美丽万怨完成签到,获得积分10
16秒前
DDJoy完成签到,获得积分10
16秒前
16秒前
Ava应助体贴汽车采纳,获得10
19秒前
20秒前
木影忆完成签到 ,获得积分10
21秒前
111完成签到,获得积分10
22秒前
儒雅谷芹完成签到,获得积分10
24秒前
金阿垚在科研完成签到,获得积分10
24秒前
27秒前
30秒前
yar应助重要的奇异果采纳,获得10
30秒前
舟舟发布了新的文献求助10
31秒前
体贴汽车发布了新的文献求助10
31秒前
32秒前
34秒前
sun发布了新的文献求助10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967180
求助须知:如何正确求助?哪些是违规求助? 3512515
关于积分的说明 11163719
捐赠科研通 3247427
什么是DOI,文献DOI怎么找? 1793827
邀请新用户注册赠送积分活动 874650
科研通“疑难数据库(出版商)”最低求助积分说明 804488