Research on medical insurance anti-gang fraud model based on the knowledge graph

计算机科学 图形 保险欺诈 计算机安全 理论计算机科学 法学 政治学
作者
Fangzheng Cheng,Chun Yan,Wei Liu,Xiangyun Lin
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:134: 108627-108627
标识
DOI:10.1016/j.engappai.2024.108627
摘要

Detection of medical insurance fraud is of significant research importance. Currently, most methods focus on supervised data, but identifying gang fraud requires exploring relationships among gang members, for which labeled data cannot be obtained in advance, this makes unsupervised models more suitable. In this paper, we propose an unsupervised model based on knowledge graph and the Louvain algorithm for identifying medical insurance gang fraud. Firstly, a knowledge graph is constructed based on medical records using the NetworkX algorithm to establish a knowledge graph of anti-gang fraud in medical insurance, facilitating the summarization of risk rules after community division. Then, the Louvain algorithm is applied to the patient–doctor relationship network to discover communities, and then we divide the entire knowledge graph into four levels of communities with high, medium, low, and no apparent risk, respectively. Different measures are proposed for communities with different risk levels for supervision. To demonstrate the superiority of the proposed model, it is compared with other unsupervised models on multiple datasets for gang fraud identification. By comparing the correct partition rate, the superiority of the proposed model in the research of medical insurance gang fraud identification is demonstrated, providing an effective unsupervised learning method for identifying medical insurance gang fraud, facilitating the proposal of prevention and control measures, and preventing fraudulent incidents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助桢桢树采纳,获得10
刚刚
2秒前
时倾完成签到,获得积分20
2秒前
poplar完成签到,获得积分10
2秒前
开放又亦发布了新的文献求助10
2秒前
2秒前
3秒前
勾陈一完成签到,获得积分10
3秒前
彭于晏应助蛋黄派采纳,获得10
4秒前
quan发布了新的文献求助10
4秒前
5秒前
大个应助Serenity采纳,获得10
5秒前
林黛玉发布了新的文献求助10
5秒前
5秒前
叮叮当当完成签到,获得积分10
6秒前
dtjvb发布了新的文献求助10
6秒前
鱿鱼完成签到,获得积分10
6秒前
脑洞疼应助Rencal采纳,获得10
7秒前
7秒前
淡定的忆山完成签到 ,获得积分10
8秒前
8秒前
Hello应助缥缈的闭月采纳,获得30
9秒前
9秒前
DDDD源发布了新的文献求助10
9秒前
Jasper应助nron采纳,获得10
9秒前
JamesPei应助hdbys采纳,获得10
10秒前
10秒前
11秒前
绕地球3圈发布了新的文献求助10
11秒前
newman完成签到,获得积分10
11秒前
10发布了新的文献求助10
11秒前
小怪兽发布了新的文献求助10
12秒前
雾失楼台完成签到,获得积分10
12秒前
苏杉杉发布了新的文献求助10
13秒前
BINGBING发布了新的文献求助10
13秒前
可爱芷容完成签到,获得积分10
15秒前
落雁发布了新的文献求助10
15秒前
gsgg完成签到 ,获得积分10
15秒前
15秒前
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650