Research on medical insurance anti-gang fraud model based on the knowledge graph

计算机科学 图形 保险欺诈 计算机安全 理论计算机科学 法学 政治学
作者
Fangzheng Cheng,Chun Yan,Wei Liu,Xiangyun Lin
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:134: 108627-108627
标识
DOI:10.1016/j.engappai.2024.108627
摘要

Detection of medical insurance fraud is of significant research importance. Currently, most methods focus on supervised data, but identifying gang fraud requires exploring relationships among gang members, for which labeled data cannot be obtained in advance, this makes unsupervised models more suitable. In this paper, we propose an unsupervised model based on knowledge graph and the Louvain algorithm for identifying medical insurance gang fraud. Firstly, a knowledge graph is constructed based on medical records using the NetworkX algorithm to establish a knowledge graph of anti-gang fraud in medical insurance, facilitating the summarization of risk rules after community division. Then, the Louvain algorithm is applied to the patient–doctor relationship network to discover communities, and then we divide the entire knowledge graph into four levels of communities with high, medium, low, and no apparent risk, respectively. Different measures are proposed for communities with different risk levels for supervision. To demonstrate the superiority of the proposed model, it is compared with other unsupervised models on multiple datasets for gang fraud identification. By comparing the correct partition rate, the superiority of the proposed model in the research of medical insurance gang fraud identification is demonstrated, providing an effective unsupervised learning method for identifying medical insurance gang fraud, facilitating the proposal of prevention and control measures, and preventing fraudulent incidents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南岸发布了新的文献求助30
刚刚
zzx发布了新的文献求助10
刚刚
刚刚
敏感冰蓝完成签到,获得积分10
1秒前
英俊芷完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
LeafJin发布了新的文献求助10
2秒前
2秒前
3秒前
南宫清涟应助samuealndjw采纳,获得10
3秒前
深情安青应助小王采纳,获得10
4秒前
酷波er应助合适的玉米采纳,获得10
4秒前
熠熠完成签到,获得积分10
5秒前
Star完成签到 ,获得积分10
6秒前
东方烨伟发布了新的文献求助30
6秒前
7秒前
7秒前
7秒前
咕噜咕噜完成签到 ,获得积分10
8秒前
8秒前
南宫清涟应助橘梓璇采纳,获得10
8秒前
南岸完成签到,获得积分10
8秒前
EvaHo发布了新的文献求助10
8秒前
默默的青旋完成签到,获得积分20
8秒前
Bokuto发布了新的文献求助10
9秒前
9秒前
wei发布了新的文献求助150
10秒前
可靠的亦竹完成签到 ,获得积分10
11秒前
子蓼完成签到 ,获得积分10
11秒前
12秒前
12秒前
云云发布了新的文献求助10
13秒前
14秒前
田様应助TangQQ采纳,获得10
14秒前
欢呼的鲂完成签到,获得积分10
15秒前
ZYK完成签到,获得积分10
15秒前
16秒前
星辰大海应助开心的西瓜采纳,获得10
16秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3415283
求助须知:如何正确求助?哪些是违规求助? 3017167
关于积分的说明 8879668
捐赠科研通 2704722
什么是DOI,文献DOI怎么找? 1482989
科研通“疑难数据库(出版商)”最低求助积分说明 685630
邀请新用户注册赠送积分活动 680579