When navigating in cold sea areas, surface vessels such as hovercrafts and destroyers often encounter the issue of ice formation, caused by splashing waves and water droplets, which can clog the air intake filtration systems and lead to performance degradation and safety hazards for gas turbines. To address this problem, this paper proposes an anti-icing wave-plate separation structure (AWS), aiming to meet both the anti-icing and droplet filtration requirements within the intake duct. Utilizing numerical simulation methods, the paper calculates the performance of six different models with varying bending angles (θ) and spacings between waved plates (H1), and conducts experiments to measure the total pressure loss (ΔP) of model (f) under non-heating conditions. The experimental measurement results have demonstrated that the AWS structure exhibits a total pressure loss of less than 1000 Pa when designed for an inlet air velocity of 7 m/s. This meets the design requirements specified for ship air intakes. Numerical simulation results indicate that as H1 increases from 19 mm to 23 mm, the ΔP of the AWS decreases by 47.8 %, while the temperature difference between the inlet and outlet (ΔT) decreases by 26.7 %, with minimal impact on the comprehensive heat transfer coefficient (ξ). Conversely, reducing θ of the wave-plates from 36° to 21° decreases ΔP by 84.2 %, ΔT by 29.7 %, and increases ξ by 17 %. When designing the AWS, it is advisable to adjust θ and H1 based on the specific requirements of the vessel's intake duct to ensure a larger ξ while meeting the actual needs of ΔP and ΔT.