Experimental and numerical simulation study on the heat transfer effect of anti-icing wave-plate separators in marine air intake systems

传热 结冰 海洋工程 工程类 机械 机械工程 环境科学 材料科学 气象学 物理
作者
Zhiwei Deng,Zhongyi Wang,Xiaohu Chen,Yanhua Wang,Lei Wan
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:251: 123523-123523 被引量:4
标识
DOI:10.1016/j.applthermaleng.2024.123523
摘要

When navigating in cold sea areas, surface vessels such as hovercrafts and destroyers often encounter the issue of ice formation, caused by splashing waves and water droplets, which can clog the air intake filtration systems and lead to performance degradation and safety hazards for gas turbines. To address this problem, this paper proposes an anti-icing wave-plate separation structure (AWS), aiming to meet both the anti-icing and droplet filtration requirements within the intake duct. Utilizing numerical simulation methods, the paper calculates the performance of six different models with varying bending angles (θ) and spacings between waved plates (H1), and conducts experiments to measure the total pressure loss (ΔP) of model (f) under non-heating conditions. The experimental measurement results have demonstrated that the AWS structure exhibits a total pressure loss of less than 1000 Pa when designed for an inlet air velocity of 7 m/s. This meets the design requirements specified for ship air intakes. Numerical simulation results indicate that as H1 increases from 19 mm to 23 mm, the ΔP of the AWS decreases by 47.8 %, while the temperature difference between the inlet and outlet (ΔT) decreases by 26.7 %, with minimal impact on the comprehensive heat transfer coefficient (ξ). Conversely, reducing θ of the wave-plates from 36° to 21° decreases ΔP by 84.2 %, ΔT by 29.7 %, and increases ξ by 17 %. When designing the AWS, it is advisable to adjust θ and H1 based on the specific requirements of the vessel's intake duct to ensure a larger ξ while meeting the actual needs of ΔP and ΔT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
子车茗应助科研通管家采纳,获得20
刚刚
Hello应助科研通管家采纳,获得30
刚刚
刚刚
刚刚
刚刚
刚刚
丘比特应助小付采纳,获得10
刚刚
math-naive发布了新的文献求助200
刚刚
王巧巧完成签到,获得积分10
1秒前
喜乐发布了新的文献求助10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
aaatan完成签到 ,获得积分10
5秒前
林撞树完成签到,获得积分10
6秒前
小冬腊月完成签到,获得积分10
6秒前
研友_nq2QpZ发布了新的文献求助10
7秒前
FOODIE完成签到,获得积分10
7秒前
冷艳的海白完成签到,获得积分10
7秒前
杰2580发布了新的文献求助10
8秒前
10秒前
可取完成签到,获得积分10
11秒前
美好的老黑完成签到 ,获得积分10
11秒前
momo完成签到,获得积分10
13秒前
机灵石头完成签到,获得积分10
13秒前
研友_nq2QpZ完成签到,获得积分10
14秒前
FashionBoy应助Hua采纳,获得100
14秒前
每天都在找完成签到,获得积分10
15秒前
牛角包完成签到,获得积分10
16秒前
wanci应助Hug采纳,获得10
16秒前
杰2580完成签到,获得积分10
17秒前
lijianguo完成签到,获得积分10
17秒前
确幸完成签到 ,获得积分10
17秒前
小二郎应助王电催化采纳,获得10
18秒前
77最可爱完成签到,获得积分10
18秒前
RenHP完成签到,获得积分10
18秒前
淡然一德完成签到,获得积分10
18秒前
不如吃茶去完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418754
求助须知:如何正确求助?哪些是违规求助? 4534384
关于积分的说明 14143702
捐赠科研通 4450621
什么是DOI,文献DOI怎么找? 2441331
邀请新用户注册赠送积分活动 1433030
关于科研通互助平台的介绍 1410467