Experimental and numerical simulation study on the heat transfer effect of anti-icing wave-plate separators in marine air intake systems

传热 结冰 海洋工程 工程类 机械 机械工程 环境科学 材料科学 气象学 物理
作者
Zhiwei Deng,Zhongyi Wang,Xiaohu Chen,Yanhua Wang,Lei Wan
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:251: 123523-123523
标识
DOI:10.1016/j.applthermaleng.2024.123523
摘要

When navigating in cold sea areas, surface vessels such as hovercrafts and destroyers often encounter the issue of ice formation, caused by splashing waves and water droplets, which can clog the air intake filtration systems and lead to performance degradation and safety hazards for gas turbines. To address this problem, this paper proposes an anti-icing wave-plate separation structure (AWS), aiming to meet both the anti-icing and droplet filtration requirements within the intake duct. Utilizing numerical simulation methods, the paper calculates the performance of six different models with varying bending angles (θ) and spacings between waved plates (H1), and conducts experiments to measure the total pressure loss (ΔP) of model (f) under non-heating conditions. The experimental measurement results have demonstrated that the AWS structure exhibits a total pressure loss of less than 1000 Pa when designed for an inlet air velocity of 7 m/s. This meets the design requirements specified for ship air intakes. Numerical simulation results indicate that as H1 increases from 19 mm to 23 mm, the ΔP of the AWS decreases by 47.8 %, while the temperature difference between the inlet and outlet (ΔT) decreases by 26.7 %, with minimal impact on the comprehensive heat transfer coefficient (ξ). Conversely, reducing θ of the wave-plates from 36° to 21° decreases ΔP by 84.2 %, ΔT by 29.7 %, and increases ξ by 17 %. When designing the AWS, it is advisable to adjust θ and H1 based on the specific requirements of the vessel's intake duct to ensure a larger ξ while meeting the actual needs of ΔP and ΔT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拉萨小医生完成签到,获得积分10
1秒前
简单的期待应助沉辰采纳,获得10
1秒前
1秒前
dujiajiyi完成签到 ,获得积分10
1秒前
阿柴_Htao完成签到,获得积分10
3秒前
wanci应助糖葫芦采纳,获得10
3秒前
傻呼呼完成签到,获得积分10
3秒前
yyf发布了新的文献求助10
4秒前
Keven完成签到,获得积分10
4秒前
lalala应助JJ采纳,获得20
4秒前
迟大猫应助任性的思枫采纳,获得10
4秒前
4秒前
好好学习发布了新的文献求助10
4秒前
情怀应助卓头OvQ采纳,获得10
4秒前
5秒前
czmz发布了新的文献求助10
5秒前
5秒前
爆米花应助Qqq采纳,获得10
6秒前
初心完成签到,获得积分10
6秒前
6秒前
sy完成签到,获得积分10
6秒前
必毕业完成签到,获得积分20
7秒前
8秒前
9秒前
可乐发布了新的文献求助10
9秒前
狗蛋000发布了新的文献求助10
10秒前
why发布了新的文献求助10
11秒前
善良的冷梅完成签到,获得积分10
12秒前
科研通AI5应助Cecilia采纳,获得10
12秒前
14秒前
葫芦瓢完成签到,获得积分10
15秒前
16秒前
小蘑菇应助爱学习的子正采纳,获得10
16秒前
YZT8848完成签到,获得积分10
16秒前
充电宝应助过时的又槐采纳,获得10
16秒前
17秒前
17秒前
18秒前
18秒前
19秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483395
求助须知:如何正确求助?哪些是违规求助? 3072756
关于积分的说明 9127749
捐赠科研通 2764321
什么是DOI,文献DOI怎么找? 1517109
邀请新用户注册赠送积分活动 701937
科研通“疑难数据库(出版商)”最低求助积分说明 700797