Experimental and numerical simulation study on the heat transfer effect of anti-icing wave-plate separators in marine air intake systems

传热 结冰 海洋工程 工程类 机械 机械工程 环境科学 材料科学 气象学 物理
作者
Zhiwei Deng,Zhongyi Wang,Xiaohu Chen,Yanhua Wang,Lei Wan
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:251: 123523-123523 被引量:4
标识
DOI:10.1016/j.applthermaleng.2024.123523
摘要

When navigating in cold sea areas, surface vessels such as hovercrafts and destroyers often encounter the issue of ice formation, caused by splashing waves and water droplets, which can clog the air intake filtration systems and lead to performance degradation and safety hazards for gas turbines. To address this problem, this paper proposes an anti-icing wave-plate separation structure (AWS), aiming to meet both the anti-icing and droplet filtration requirements within the intake duct. Utilizing numerical simulation methods, the paper calculates the performance of six different models with varying bending angles (θ) and spacings between waved plates (H1), and conducts experiments to measure the total pressure loss (ΔP) of model (f) under non-heating conditions. The experimental measurement results have demonstrated that the AWS structure exhibits a total pressure loss of less than 1000 Pa when designed for an inlet air velocity of 7 m/s. This meets the design requirements specified for ship air intakes. Numerical simulation results indicate that as H1 increases from 19 mm to 23 mm, the ΔP of the AWS decreases by 47.8 %, while the temperature difference between the inlet and outlet (ΔT) decreases by 26.7 %, with minimal impact on the comprehensive heat transfer coefficient (ξ). Conversely, reducing θ of the wave-plates from 36° to 21° decreases ΔP by 84.2 %, ΔT by 29.7 %, and increases ξ by 17 %. When designing the AWS, it is advisable to adjust θ and H1 based on the specific requirements of the vessel's intake duct to ensure a larger ξ while meeting the actual needs of ΔP and ΔT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宇宙粉红闪电完成签到,获得积分10
刚刚
cc完成签到,获得积分10
1秒前
lhy1150469792完成签到,获得积分10
1秒前
3秒前
momo完成签到,获得积分10
3秒前
大芳儿发布了新的文献求助10
3秒前
天天快乐应助阿酒采纳,获得10
4秒前
大个应助张悦采纳,获得10
6秒前
lhy1150469792发布了新的文献求助10
6秒前
biu我你开心吗完成签到,获得积分10
7秒前
7秒前
慕青应助Lusteri采纳,获得10
8秒前
小马甲应助科研王采纳,获得10
8秒前
SciGPT应助小灰灰采纳,获得10
9秒前
小心完成签到,获得积分10
9秒前
科研通AI6应助CC采纳,获得30
9秒前
金钱柳完成签到,获得积分10
10秒前
坦率面包完成签到,获得积分10
11秒前
科研通AI6应助Joy采纳,获得10
11秒前
orixero应助qiao采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
玩命的十三完成签到 ,获得积分10
12秒前
12秒前
13秒前
14秒前
Dksido完成签到 ,获得积分20
14秒前
14秒前
张志超发布了新的文献求助10
14秒前
明亮的咖啡豆完成签到,获得积分10
14秒前
淡淡的小老鼠完成签到,获得积分10
14秒前
科研王完成签到,获得积分10
14秒前
现代大米完成签到,获得积分10
15秒前
啦啦啦完成签到,获得积分10
15秒前
16秒前
晚风完成签到,获得积分10
16秒前
16秒前
16秒前
赘婿应助和谐蛋蛋采纳,获得10
16秒前
李爱国应助风趣的黑夜采纳,获得10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646269
求助须知:如何正确求助?哪些是违规求助? 4770756
关于积分的说明 15034169
捐赠科研通 4805036
什么是DOI,文献DOI怎么找? 2569371
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812