微控制器
计算机科学
功率(物理)
超低功耗
动力学(音乐)
电子工程
人工智能
电气工程
工程类
嵌入式系统
物理
功率消耗
量子力学
声学
作者
Marcello Zanghieri,Pierangelo Maria Rapa,Mattia Orlandi,Elisa Donati,Luca Benini,Simone Benatti
出处
期刊:IEEE Transactions on Biomedical Circuits and Systems
[Institute of Electrical and Electronics Engineers]
日期:2024-06-17
卷期号:18 (4): 810-820
标识
DOI:10.1109/tbcas.2024.3415392
摘要
Surface electromyography (sEMG) is a State-of-the-Art (SoA) sensing modality for non-invasive human-machine interfaces for consumer, industrial, and rehabilitation use cases. The main limitation of the current sEMG-driven control policies is the sEMG's inherent variability, especially cross-session due to sensor repositioning; this limits the generalization of the Machine/Deep Learning (ML/DL) in charge of the signal-to-command mapping. The other hot front on the ML/DL side of sEMG-driven control is the shift from the classification of fixed hand positions to the regression of hand kinematics and dynamics, promising a more versatile and fluid control. We present an incremental online-training strategy for sEMG-based estimation of simultaneous multi-finger forces, using a small Temporal Convolutional Network suitable for embedded learning-on-device. We validate our method on the HYSER dataset, cross-day. Our incremental online training reaches a cross-day Mean Absolute Error (MAE) of (9.58 ± 3.89)% of the Maximum Voluntary Contraction on HYSER's RANDOM dataset of improvised, non-predefined force sequences, which is the most challenging and closest to real scenarios. This MAE is on par with an accuracy-oriented, non-embeddable offline training exploiting more epochs. Further, we demonstrate that our online training approach can be deployed on the GAP9 ultra-low power microcontroller, obtaining a latency of 1.49 ms and an energy draw of just 40.4 uJ per forward-backward-update step. These results show that our solution fits the requirements for accurate and real-time incremental training-on-device.
科研通智能强力驱动
Strongly Powered by AbleSci AI