sEMG-driven Hand Dynamics Estimation with Incremental Online Learning on a Parallel Ultra-Low-Power Microcontroller

微控制器 计算机科学 功率(物理) 超低功耗 动力学(音乐) 电子工程 人工智能 电气工程 工程类 嵌入式系统 物理 功率消耗 量子力学 声学
作者
Marcello Zanghieri,Pierangelo Maria Rapa,Mattia Orlandi,Elisa Donati,Luca Benini,Simone Benatti
出处
期刊:IEEE Transactions on Biomedical Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:18 (4): 810-820
标识
DOI:10.1109/tbcas.2024.3415392
摘要

Surface electromyography (sEMG) is a State-of-the-Art (SoA) sensing modality for non-invasive human-machine interfaces for consumer, industrial, and rehabilitation use cases. The main limitation of the current sEMG-driven control policies is the sEMG's inherent variability, especially cross-session due to sensor repositioning; this limits the generalization of the Machine/Deep Learning (ML/DL) in charge of the signal-to-command mapping. The other hot front on the ML/DL side of sEMG-driven control is the shift from the classification of fixed hand positions to the regression of hand kinematics and dynamics, promising a more versatile and fluid control. We present an incremental online-training strategy for sEMG-based estimation of simultaneous multi-finger forces, using a small Temporal Convolutional Network suitable for embedded learning-on-device. We validate our method on the HYSER dataset, cross-day. Our incremental online training reaches a cross-day Mean Absolute Error (MAE) of (9.58 ± 3.89)% of the Maximum Voluntary Contraction on HYSER's RANDOM dataset of improvised, non-predefined force sequences, which is the most challenging and closest to real scenarios. This MAE is on par with an accuracy-oriented, non-embeddable offline training exploiting more epochs. Further, we demonstrate that our online training approach can be deployed on the GAP9 ultra-low power microcontroller, obtaining a latency of 1.49 ms and an energy draw of just 40.4 uJ per forward-backward-update step. These results show that our solution fits the requirements for accurate and real-time incremental training-on-device.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
wy.he应助科研通管家采纳,获得20
1秒前
今后应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得30
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
FashionBoy应助科研通管家采纳,获得30
2秒前
2秒前
HYF完成签到,获得积分10
2秒前
2秒前
小兵应助科研通管家采纳,获得10
2秒前
晚来客应助科研通管家采纳,获得20
2秒前
2秒前
2秒前
Lucas应助科研通管家采纳,获得10
3秒前
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
3秒前
周涛发布了新的文献求助30
5秒前
柴桑青木完成签到,获得积分0
7秒前
小柠檬完成签到,获得积分10
8秒前
少盐完成签到,获得积分10
9秒前
刻苦牛马完成签到 ,获得积分10
10秒前
10秒前
Cold发布了新的文献求助10
11秒前
好奇小怪发布了新的文献求助10
12秒前
13秒前
14秒前
SciGPT应助四糸乃采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633293
求助须知:如何正确求助?哪些是违规求助? 4029304
关于积分的说明 12466863
捐赠科研通 3715514
什么是DOI,文献DOI怎么找? 2050190
邀请新用户注册赠送积分活动 1081753
科研通“疑难数据库(出版商)”最低求助积分说明 964055