OUR-Net: A Multi-Frequency Network With Octave Max Unpooling and Octave Convolution Residual Block for Pavement Crack Segmentation

倍频程(电子) 卷积(计算机科学) 残余物 块(置换群论) 计算机科学 声学 数学 算法 人工智能 物理 几何学 人工神经网络
作者
Pin-Han Li,Meihua Wang,Zhun Fan,Han Huang,Guijie Zhu,J. C. Zhuang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16
标识
DOI:10.1109/tits.2024.3405995
摘要

Cracks are among the most common, most likely, and earliest of all pavement distresses. Detecting and repairing cracks as early as possible can help extend the service life of pavements. However, Detecting cracks with precision can be challenging due to their varied structural characteristics and complex background interference. In this paper, a new convolutional neural network architecture, OUR-Net, is designed to more efficiently treat both high-and low-frequency visual image features. An Ocatve Convolution is incorporated into the proposed network as an enhancement to conventional convolution. In particular, an Octave Convolution Residual Block (OCRB) is embedded in the encoder to replace the convolutional layer of the classical encoder. Moerover, we propose Octave Max Unpooling (OMU) as the upsampling operation of the decoder, enabling the neural network to learn how to decode multi-spatial frequency features. Compared with models using traditional convolution, OUR-Net has better capability of processing multi-scale information, thus simultaneously improving model performance while saving computational costs by reducing spatial redundancy. We evaluate the superiority of the proposed method by comparing it to state-of-the-art crack segmentation methods on four public datasets (CrackLS315, CFD, Crack200, DeepCrack), which encompass cracks of various widths. Comprehensive experimental results reveal that the proposed method performs excellently, which achieves F1-score and mIoU of 0.9112, 0.9271, 0.8106, 0.9318, and 0.8369, 0.8644, 0.6815, 0.8723, respectively, on the four datasets. A lightweight version of the proposed network is constructed using depthwise separable convolution that achieves excellent performance with only 0.88M parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiangcai完成签到,获得积分10
刚刚
2秒前
奋斗天德发布了新的文献求助10
3秒前
4秒前
清脆愫完成签到 ,获得积分10
4秒前
6秒前
Nano-Su完成签到 ,获得积分10
6秒前
6秒前
潇洒的诗桃完成签到,获得积分0
7秒前
yang完成签到,获得积分10
8秒前
9秒前
科研通AI2S应助qj采纳,获得10
10秒前
奋斗天德完成签到 ,获得积分10
12秒前
muzi发布了新的文献求助10
13秒前
13秒前
小喵发布了新的文献求助10
14秒前
一味地丶逞强完成签到,获得积分10
15秒前
甜美百褶裙完成签到,获得积分10
17秒前
清爽达完成签到 ,获得积分10
17秒前
余姓懒完成签到,获得积分10
21秒前
21秒前
搜集达人应助小喵采纳,获得10
22秒前
忧心的网络完成签到,获得积分10
23秒前
一二三木偶人完成签到,获得积分10
23秒前
科研通AI2S应助qq.com采纳,获得10
23秒前
虚拟的眼神完成签到,获得积分10
26秒前
FashionBoy应助aliupeifang采纳,获得30
31秒前
搞怪书兰完成签到,获得积分10
33秒前
黎明完成签到,获得积分10
34秒前
11111完成签到,获得积分10
34秒前
小格调完成签到 ,获得积分10
35秒前
开心的小媚完成签到 ,获得积分10
38秒前
39秒前
小格调关注了科研通微信公众号
40秒前
40秒前
蛋炒饭不加蛋完成签到,获得积分10
40秒前
英姑应助科研通管家采纳,获得10
41秒前
Owen应助科研通管家采纳,获得10
41秒前
罗_应助科研通管家采纳,获得10
41秒前
小马甲应助科研通管家采纳,获得10
41秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137511
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7786944
捐赠科研通 2444783
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625770
版权声明 601023