已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Amharic spoken digits recognition using convolutional neural network

阿姆哈拉语 计算机科学 卷积神经网络 计算科学与工程 语音识别 自然语言处理 人工智能 人工神经网络 机器学习
作者
Tewodros Alemu Ayall,Changjun Zhou,Huawen Liu,Getnet Mezgebu Brhanemeskel,Solomon Teferra Abate,Michael Adjeisah
出处
期刊:Journal of Big Data [Springer Nature]
卷期号:11 (1)
标识
DOI:10.1186/s40537-024-00910-z
摘要

Abstract Spoken digits recognition (SDR) is a type of supervised automatic speech recognition, which is required in various human–machine interaction applications. It is utilized in phone-based services like dialing systems, certain bank operations, airline reservation systems, and price extraction. However, the design of SDR is a challenging task that requires the development of labeled audio data, the proper choice of feature extraction method, and the development of the best performing model. Even if several works have been done for various languages, such as English, Arabic, Urdu, etc., there is no developed Amharic spoken digits dataset (AmSDD) to build Amharic spoken digits recognition (AmSDR) model for the Amharic language, which is the official working language of the government of Ethiopia. Therefore, in this study, we developed a new AmSDD that contains 12,000 utterances of 0 (Zaero) to 9 (zet’enyi) digits which were recorded from 120 volunteer speakers of different age groups, genders, and dialects who repeated each digit ten times. Mel frequency cepstral coefficients (MFCCs) and Mel-Spectrogram feature extraction methods were used to extract trainable features from the speech signal. We conducted different experiments on the development of the AmSDR model using the AmSDD and classical supervised learning algorithms such as Linear Discriminant Analysis (LDA), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Random Forest (RF) as the baseline. To further improve the performance recognition of AmSDR, we propose a three layers Convolutional Neural Network (CNN) architecture with Batch normalization. The results of our experiments show that the proposed CNN model outperforms the baseline algorithms and scores an accuracy of 99% and 98% using MFCCs and Mel-Spectrogram features, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
文献完成签到,获得积分10
6秒前
Seameng完成签到 ,获得积分10
15秒前
17秒前
Demi_Ming完成签到,获得积分10
22秒前
Chemistry发布了新的文献求助10
22秒前
成就亦寒完成签到,获得积分20
24秒前
25秒前
25秒前
hannuannuan发布了新的文献求助10
28秒前
29秒前
29秒前
精明元霜完成签到,获得积分10
30秒前
英勇羿发布了新的文献求助10
33秒前
leslie完成签到 ,获得积分10
42秒前
huanger完成签到,获得积分10
43秒前
46秒前
天天快乐应助hannuannuan采纳,获得10
47秒前
tyfelix完成签到,获得积分10
48秒前
49秒前
小点点发布了新的文献求助10
50秒前
immortal发布了新的文献求助10
54秒前
54秒前
大个应助immortal采纳,获得10
58秒前
爆米花应助liuliu采纳,获得10
1分钟前
Owen应助文静的摩托采纳,获得10
1分钟前
liuliu完成签到,获得积分10
1分钟前
SciGPT应助小点点采纳,获得10
1分钟前
英勇羿发布了新的文献求助30
1分钟前
情怀应助polaris采纳,获得10
1分钟前
1分钟前
1分钟前
Chemistry完成签到,获得积分10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
烟花应助牟白容采纳,获得10
1分钟前
1分钟前
1分钟前
liuliu发布了新的文献求助10
1分钟前
su完成签到,获得积分10
1分钟前
polaris发布了新的文献求助10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146684
求助须知:如何正确求助?哪些是违规求助? 2798001
关于积分的说明 7826352
捐赠科研通 2454503
什么是DOI,文献DOI怎么找? 1306289
科研通“疑难数据库(出版商)”最低求助积分说明 627692
版权声明 601522