Robust Prototypical Few-Shot Organ Segmentation With Regularized Neural-ODEs

计算机科学 卷积神经网络 人工智能 分割 对抗制 稳健性(进化) 深度学习 像素 注释 模式识别(心理学) 颂歌 人工神经网络 机器学习 数学 生物化学 基因 化学 应用数学
作者
Prashant Pandey,Mustafa Chasmai,Tanuj Sur,Brejesh Lall
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (9): 2490-2501 被引量:4
标识
DOI:10.1109/tmi.2023.3258069
摘要

Despite the tremendous progress made by deep learning models in image semantic segmentation, they typically require large annotated examples, and increasing attention is being diverted to problem settings like Few-Shot Learning (FSL) where only a small amount of annotation is needed for generalisation to novel classes. This is especially seen in medical domains where dense pixel-level annotations are expensive to obtain. In this paper, we propose Regularized Prototypical Neural Ordinary Differential Equation (R-PNODE), a method that leverages intrinsic properties of Neural-ODEs, assisted and enhanced by additional cluster and consistency losses to perform Few-Shot Segmentation (FSS) of organs. R-PNODE constrains support and query features from the same classes to lie closer in the representation space thereby improving the performance over the existing Convolutional Neural Network (CNN) based FSS methods. We further demonstrate that while many existing Deep CNN-based methods tend to be extremely vulnerable to adversarial attacks, R-PNODE exhibits increased adversarial robustness for a wide array of these attacks. We experiment with three publicly available multi-organ segmentation datasets in both in-domain and cross-domain FSS settings to demonstrate the efficacy of our method. In addition, we perform experiments with seven commonly used adversarial attacks in various settings to demonstrate R-PNODE's robustness. R-PNODE outperforms the baselines for FSS by significant margins and also shows superior performance for a wide array of attacks varying in intensity and design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
yesir完成签到,获得积分10
刚刚
nebula应助清水小镇采纳,获得10
1秒前
1秒前
昨夜雨疏风骤完成签到,获得积分10
1秒前
1秒前
义气语儿完成签到,获得积分10
2秒前
辛勤天奇完成签到,获得积分10
3秒前
3秒前
Eric_zhu发布了新的文献求助10
3秒前
3秒前
武傲翔发布了新的文献求助10
4秒前
4秒前
哭泣的书竹完成签到,获得积分10
4秒前
5秒前
wang发布了新的文献求助10
5秒前
xy发布了新的文献求助10
5秒前
6秒前
王文茹发布了新的文献求助10
6秒前
张嘉伟发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
乐乐应助楼下太吵了采纳,获得10
7秒前
lzzzzz完成签到,获得积分10
9秒前
lulu完成签到,获得积分10
9秒前
bluesiryao发布了新的文献求助10
9秒前
在水一方应助真实的麦片采纳,获得10
10秒前
dilibolaba发布了新的文献求助10
10秒前
善学以致用应助小龙锅采纳,获得10
10秒前
10秒前
温乘云完成签到,获得积分10
11秒前
Lucas应助士兵许三多采纳,获得10
11秒前
Jasper应助泽普采纳,获得10
11秒前
和谐的数据线完成签到,获得积分10
11秒前
王一帆发布了新的文献求助10
12秒前
12秒前
guohuameike完成签到,获得积分10
12秒前
ZZW完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951400
求助须知:如何正确求助?哪些是违规求助? 3496764
关于积分的说明 11084465
捐赠科研通 3227180
什么是DOI,文献DOI怎么找? 1784320
邀请新用户注册赠送积分活动 868350
科研通“疑难数据库(出版商)”最低求助积分说明 801110