光催化
涂层
锐钛矿
降级(电信)
材料科学
甲醛
亚甲蓝
催化作用
化学工程
化学
纳米技术
有机化学
计算机科学
电信
工程类
作者
Yun Lu,Sujun Guan,Liang Hao,Hiroyuki Yoshida,Shohei Nakada,Taisei Takisawa,Takaomi Itoi
标识
DOI:10.1038/s41598-022-20459-2
摘要
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causative agent of the COVID-19, which is a global pandemic, has infected more than 552 million people, and killed more than 6.3 million people. SARS-CoV-2 can be transmitted through airborne route in addition to direct contact and droplet modes, the development of disinfectants that can be applied in working spaces without evacuating people is urgently needed. TiO2 is well known with some features of the purification, antibacterial/sterilization, making it could be developed disinfectants that can be applied in working spaces without evacuating people. Facing the severe epidemic, we expect to fully expand the application of our proposed effective approach of mechanical coating technique (MCT), which can be prepared on a large-scale fabrication of an easy-to-use TiO2/Ti photocatalyst coating, with hope to curb the epidemic. The photocatalytic inactivation of SARS-CoV-2 and influenza virus, and the photocatalytic degradation of acetaldehyde (C2H4O) and formaldehyde (CH2O) has been investigated. XRD and SEM results show that anatase TiO2 successfully coats on the surface of Ti coatings, while the crystal structure of anatase TiO2 can be increased during the following oxidation in air. The catalytic activity towards methylene blue of TiO2/Ti coating balls has been significantly enhanced by the followed oxidation in air, showing a very satisfying photocatalytic degradation of C2H4O and CH2O. Notably, the TiO2/Ti photocatalyst coating balls demonstrate a significant antiviral activity, with a decrease rate of virus reached 99.96% for influenza virus and 99.99% for SARS-CoV-2.
科研通智能强力驱动
Strongly Powered by AbleSci AI