亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Invasive mechanical ventilation probability estimation using machine learning methods based on non-invasive parameters

预警得分 接收机工作特性 机械通风 计算机科学 预警系统 机器学习 人工智能 算法 急诊医学 医学 电信 精神科
作者
Huiquan Wang,Chengyi Wang,Jiameng Xu,Jing Yuan,Guanjun Liu,Guang Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:79: 104193-104193 被引量:1
标识
DOI:10.1016/j.bspc.2022.104193
摘要

Timely and accurate prediction of the requirement for invasive mechanical ventilation (IMV) can reduce patient mortality. Existing methods (traditional risk adjustment algorithms, clinical observation, et.) use laboratory parameters requiring specialized biochemical analysis, which is difficult to obtain in the pre-hospital emergency setting and does not accurately predict the requirement for IMV. In this study, 20 non-invasive parameters including patient demographic parameters, physiological parameters, Glasgow score and ventilator parameters, were extracted from the Medical Information Mart for Intensive Care III (MIMIC III) database. A real-time early warning model of IMV requirement was developed using classical seven machine learning methods in different categories and compared with two traditional risk adjustment algorithms. The prediction results using Lightgbm were 0.917 (95 %CI:0.914–0.922) for area under receiver operating characteristic curve (AUC) and 0.853 for accuracy (ACC) (95 %CI:0.850–0.856), outperforming the traditional risk adjustment algorithm, which were 0.615 and 0.533 respectively. The addition of invasive parameters increased the AUC value of the model by 0.009. A real-time early warning algorithm was developed in this paper for IMV requirement based on non-invasive parameters using seven learning methods, which proved to be superior to the traditional risk adjustment algorithm. Using real-time clinical data, the proposed algorithm can calculate current and future requirement for IMV requirement at any point in time during the stay of a patient in the ICU. Finally, it provides technical support for a wide range of applications in remote areas and disaster sites, where invasive parameters are unavailable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如沐春风发布了新的文献求助10
2秒前
汉堡包应助如沐春风采纳,获得10
18秒前
27秒前
量子星尘发布了新的文献求助10
31秒前
yx_cheng应助科研通管家采纳,获得10
37秒前
yx_cheng应助科研通管家采纳,获得10
37秒前
yx_cheng应助科研通管家采纳,获得10
37秒前
45秒前
如沐春风发布了新的文献求助10
50秒前
coolplex完成签到 ,获得积分10
1分钟前
打打应助风中的雅柏采纳,获得10
1分钟前
1分钟前
1分钟前
比比谁的速度快应助www采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
Leah发布了新的文献求助10
2分钟前
2分钟前
Liufgui应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI2S应助lalalatiancai采纳,获得10
2分钟前
如沐春风发布了新的文献求助50
3分钟前
www发布了新的文献求助10
3分钟前
www完成签到,获得积分10
3分钟前
cyj完成签到 ,获得积分10
3分钟前
3分钟前
Orange应助如沐春风采纳,获得10
3分钟前
Jason发布了新的文献求助10
3分钟前
3分钟前
3分钟前
比比谁的速度快应助Jason采纳,获得10
3分钟前
lalalatiancai发布了新的文献求助10
3分钟前
超男完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
焦糖泡芙塔给焦糖泡芙塔的求助进行了留言
4分钟前
自信寻真发布了新的文献求助10
4分钟前
Benhnhk21完成签到,获得积分10
4分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008199
求助须知:如何正确求助?哪些是违规求助? 3548001
关于积分的说明 11298620
捐赠科研通 3282865
什么是DOI,文献DOI怎么找? 1810238
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188