Invasive mechanical ventilation probability estimation using machine learning methods based on non-invasive parameters

预警得分 接收机工作特性 机械通风 计算机科学 预警系统 机器学习 人工智能 算法 急诊医学 医学 电信 精神科
作者
Huiquan Wang,Chengyi Wang,Jiameng Xu,Jing Yuan,Guanjun Liu,Guang Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:79: 104193-104193 被引量:1
标识
DOI:10.1016/j.bspc.2022.104193
摘要

Timely and accurate prediction of the requirement for invasive mechanical ventilation (IMV) can reduce patient mortality. Existing methods (traditional risk adjustment algorithms, clinical observation, et.) use laboratory parameters requiring specialized biochemical analysis, which is difficult to obtain in the pre-hospital emergency setting and does not accurately predict the requirement for IMV. In this study, 20 non-invasive parameters including patient demographic parameters, physiological parameters, Glasgow score and ventilator parameters, were extracted from the Medical Information Mart for Intensive Care III (MIMIC III) database. A real-time early warning model of IMV requirement was developed using classical seven machine learning methods in different categories and compared with two traditional risk adjustment algorithms. The prediction results using Lightgbm were 0.917 (95 %CI:0.914–0.922) for area under receiver operating characteristic curve (AUC) and 0.853 for accuracy (ACC) (95 %CI:0.850–0.856), outperforming the traditional risk adjustment algorithm, which were 0.615 and 0.533 respectively. The addition of invasive parameters increased the AUC value of the model by 0.009. A real-time early warning algorithm was developed in this paper for IMV requirement based on non-invasive parameters using seven learning methods, which proved to be superior to the traditional risk adjustment algorithm. Using real-time clinical data, the proposed algorithm can calculate current and future requirement for IMV requirement at any point in time during the stay of a patient in the ICU. Finally, it provides technical support for a wide range of applications in remote areas and disaster sites, where invasive parameters are unavailable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助wt200001采纳,获得10
1秒前
Ariels完成签到,获得积分10
1秒前
2秒前
Nina发布了新的文献求助10
2秒前
3秒前
3秒前
庆山发布了新的文献求助10
4秒前
cc完成签到,获得积分10
6秒前
Maigret完成签到,获得积分10
7秒前
8秒前
736550205发布了新的文献求助50
8秒前
天天完成签到,获得积分10
9秒前
领导范儿应助骨小梁采纳,获得10
10秒前
Robin发布了新的文献求助30
11秒前
升学顺利身体健康完成签到,获得积分10
12秒前
科研白小白完成签到,获得积分10
13秒前
广子完成签到,获得积分10
14秒前
15秒前
苏小小给苏小小的求助进行了留言
16秒前
17秒前
Faker完成签到 ,获得积分10
17秒前
机智的书竹完成签到,获得积分20
18秒前
开心的菲鹰完成签到,获得积分10
18秒前
彭彭发布了新的文献求助10
19秒前
chichqq完成签到,获得积分10
19秒前
学习猴完成签到,获得积分10
20秒前
20秒前
阿池完成签到 ,获得积分10
20秒前
jtksbf完成签到,获得积分10
20秒前
22秒前
大气的念薇完成签到 ,获得积分10
22秒前
song发布了新的文献求助10
22秒前
Robin完成签到,获得积分20
22秒前
充电宝应助懵懂小尉采纳,获得80
23秒前
24秒前
24秒前
qiu发布了新的文献求助30
25秒前
25秒前
皮蛋_WH完成签到,获得积分10
26秒前
李健的粉丝团团长应助robi采纳,获得10
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134819
求助须知:如何正确求助?哪些是违规求助? 2785712
关于积分的说明 7773883
捐赠科研通 2441585
什么是DOI,文献DOI怎么找? 1298006
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825