Invasive mechanical ventilation probability estimation using machine learning methods based on non-invasive parameters

预警得分 接收机工作特性 机械通风 计算机科学 预警系统 机器学习 人工智能 算法 急诊医学 医学 电信 精神科
作者
Huiquan Wang,Chengyi Wang,Jiameng Xu,Jing Yuan,Guanjun Liu,Guang Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:79: 104193-104193 被引量:1
标识
DOI:10.1016/j.bspc.2022.104193
摘要

Timely and accurate prediction of the requirement for invasive mechanical ventilation (IMV) can reduce patient mortality. Existing methods (traditional risk adjustment algorithms, clinical observation, et.) use laboratory parameters requiring specialized biochemical analysis, which is difficult to obtain in the pre-hospital emergency setting and does not accurately predict the requirement for IMV. In this study, 20 non-invasive parameters including patient demographic parameters, physiological parameters, Glasgow score and ventilator parameters, were extracted from the Medical Information Mart for Intensive Care III (MIMIC III) database. A real-time early warning model of IMV requirement was developed using classical seven machine learning methods in different categories and compared with two traditional risk adjustment algorithms. The prediction results using Lightgbm were 0.917 (95 %CI:0.914–0.922) for area under receiver operating characteristic curve (AUC) and 0.853 for accuracy (ACC) (95 %CI:0.850–0.856), outperforming the traditional risk adjustment algorithm, which were 0.615 and 0.533 respectively. The addition of invasive parameters increased the AUC value of the model by 0.009. A real-time early warning algorithm was developed in this paper for IMV requirement based on non-invasive parameters using seven learning methods, which proved to be superior to the traditional risk adjustment algorithm. Using real-time clinical data, the proposed algorithm can calculate current and future requirement for IMV requirement at any point in time during the stay of a patient in the ICU. Finally, it provides technical support for a wide range of applications in remote areas and disaster sites, where invasive parameters are unavailable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SCIBUDDY发布了新的文献求助10
刚刚
传奇3应助博ge采纳,获得10
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
整齐半青发布了新的文献求助10
4秒前
5秒前
美满的烙发布了新的文献求助10
6秒前
6秒前
活力菠萝发布了新的文献求助10
6秒前
小面脑袋发布了新的文献求助10
7秒前
充电宝应助Pengcheng采纳,获得10
8秒前
元羞花发布了新的文献求助10
9秒前
背后中心发布了新的文献求助10
10秒前
12秒前
流云发布了新的文献求助10
12秒前
com发布了新的文献求助10
14秒前
小蘑菇应助Gyr060307采纳,获得10
14秒前
专注的问寒应助艾飞的LR采纳,获得60
15秒前
小虫发布了新的文献求助10
15秒前
小王同学发布了新的文献求助10
16秒前
活力菠萝完成签到,获得积分10
16秒前
17秒前
FashionBoy应助wang采纳,获得10
18秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
在水一方应助zcz采纳,获得10
18秒前
初雪应助ruogu7采纳,获得10
19秒前
乐乐应助yuhan采纳,获得10
19秒前
烟花应助舒心的雍采纳,获得10
19秒前
19秒前
20秒前
20秒前
SCIBUDDY完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
流云完成签到,获得积分10
22秒前
骗骗发布了新的文献求助10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770594
求助须知:如何正确求助?哪些是违规求助? 5586008
关于积分的说明 15424556
捐赠科研通 4904087
什么是DOI,文献DOI怎么找? 2638509
邀请新用户注册赠送积分活动 1586384
关于科研通互助平台的介绍 1541462