Invasive mechanical ventilation probability estimation using machine learning methods based on non-invasive parameters

预警得分 接收机工作特性 机械通风 计算机科学 预警系统 机器学习 人工智能 算法 急诊医学 医学 电信 精神科
作者
Huiquan Wang,Chengyi Wang,Jiameng Xu,Jing Yuan,Guanjun Liu,Guang Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:79: 104193-104193 被引量:1
标识
DOI:10.1016/j.bspc.2022.104193
摘要

Timely and accurate prediction of the requirement for invasive mechanical ventilation (IMV) can reduce patient mortality. Existing methods (traditional risk adjustment algorithms, clinical observation, et.) use laboratory parameters requiring specialized biochemical analysis, which is difficult to obtain in the pre-hospital emergency setting and does not accurately predict the requirement for IMV. In this study, 20 non-invasive parameters including patient demographic parameters, physiological parameters, Glasgow score and ventilator parameters, were extracted from the Medical Information Mart for Intensive Care III (MIMIC III) database. A real-time early warning model of IMV requirement was developed using classical seven machine learning methods in different categories and compared with two traditional risk adjustment algorithms. The prediction results using Lightgbm were 0.917 (95 %CI:0.914–0.922) for area under receiver operating characteristic curve (AUC) and 0.853 for accuracy (ACC) (95 %CI:0.850–0.856), outperforming the traditional risk adjustment algorithm, which were 0.615 and 0.533 respectively. The addition of invasive parameters increased the AUC value of the model by 0.009. A real-time early warning algorithm was developed in this paper for IMV requirement based on non-invasive parameters using seven learning methods, which proved to be superior to the traditional risk adjustment algorithm. Using real-time clinical data, the proposed algorithm can calculate current and future requirement for IMV requirement at any point in time during the stay of a patient in the ICU. Finally, it provides technical support for a wide range of applications in remote areas and disaster sites, where invasive parameters are unavailable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
群青发布了新的文献求助10
刚刚
科研通AI5应助波仔采纳,获得30
刚刚
SciGPT应助pandary采纳,获得10
1秒前
裘问薇应助白嫖论文采纳,获得10
1秒前
花叶发布了新的文献求助10
1秒前
英姑应助小柴胡采纳,获得30
2秒前
2秒前
况海霞发布了新的文献求助10
4秒前
个性的迎蓉完成签到,获得积分10
4秒前
荔枝发布了新的文献求助20
4秒前
Lyh应助夏堇采纳,获得10
5秒前
edhyjdtdm完成签到,获得积分20
6秒前
6秒前
徐徐发布了新的文献求助30
7秒前
7秒前
Jasper应助十三采纳,获得10
7秒前
rock完成签到,获得积分10
7秒前
皮皮猪发布了新的文献求助10
8秒前
博观约取_奋楫笃行完成签到,获得积分10
8秒前
8秒前
giggle应助0001采纳,获得10
8秒前
9秒前
9秒前
10秒前
优秀的雁兰完成签到 ,获得积分10
10秒前
10秒前
情怀应助浪子采纳,获得10
10秒前
pandary完成签到,获得积分10
10秒前
11秒前
瓜瓜发布了新的文献求助10
12秒前
12秒前
12秒前
火星上枫发布了新的文献求助10
12秒前
孤独安萱完成签到,获得积分10
12秒前
hotdx完成签到,获得积分10
13秒前
九城完成签到,获得积分10
14秒前
小丑看花发布了新的文献求助10
14秒前
Lucas应助赵哈哈采纳,获得10
15秒前
优秀的雁兰关注了科研通微信公众号
15秒前
jzpPLA发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5028498
求助须知:如何正确求助?哪些是违规求助? 4264328
关于积分的说明 13293174
捐赠科研通 4072431
什么是DOI,文献DOI怎么找? 2227423
邀请新用户注册赠送积分活动 1235825
关于科研通互助平台的介绍 1160185