A new adaptive parallel resonance system based on cascaded feedback model of vibrational resonance and stochastic resonance and its application in fault detection of rolling bearings

随机共振 计算机科学 信号(编程语言) 噪音(视频) 谐波 共振(粒子物理) 控制理论(社会学) 断层(地质) 算法 物理 声学 人工智能 地质学 粒子物理学 图像(数学) 地震学 程序设计语言 控制(管理)
作者
Jimeng Li,Xin Cheng,Junling Peng,Zong Meng
出处
期刊:Chaos Solitons & Fractals [Elsevier]
卷期号:164: 112702-112702 被引量:17
标识
DOI:10.1016/j.chaos.2022.112702
摘要

Accurate extraction of weak feature information in strong background noise is a key to detect and identify rolling bearing faults. Stochastic resonance (SR) and vibrational resonance (VR) have received extensive attention and research in weak signal detection by reason of their advantages of utilizing additional inputs (i.e. noise or high frequency harmonic signals) to enhance weak signals. Considering the advantages and disadvantages of SR and VR in weak signal detection, this paper combines the two to construct a cascaded feedback model of VR and SR, and utilize it to form a parallel resonance system, which improves the detection performance of weak signals through the ensemble average effect. Furthermore, a multi-parameter optimization strategy based on the improved whale optimization algorithm (WOA) is proposed for the parameter selection of the parallel resonance system. It uses the constructed measurement index independent of the prior knowledge as the fitness function to realize automatic adjustment of multi-parameter, and obtains the final output by weighted summation of the optimal results obtained by multiple iterations. Finally, the suggested method is analyzed by numerical simulation signal and experimental data of rolling bearings, and the effectiveness and superiority of the proposed method in the detection of weak fault features are verified. • A new adaptive parallel resonance system based on VR and SR is proposed. • WOA is improved to achieve multi-parameter optimization of the system. • A measurement index is constructed to guide the selection of multi-parameters. • Experiments and applications verify the superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枫尽完成签到,获得积分10
1秒前
Owen应助易安采纳,获得10
1秒前
123123发布了新的文献求助10
1秒前
小景007完成签到,获得积分10
2秒前
小米完成签到,获得积分10
3秒前
顾君如完成签到 ,获得积分10
4秒前
苞米公主发布了新的文献求助10
4秒前
科研通AI2S应助不知道采纳,获得30
4秒前
4秒前
研友_VZG7GZ应助圆潘采纳,获得10
5秒前
冷艳薯片发布了新的文献求助10
9秒前
中书完成签到,获得积分10
9秒前
11秒前
赘婿应助123123采纳,获得10
11秒前
阳光海云发布了新的文献求助30
12秒前
YEEze发布了新的文献求助10
12秒前
12秒前
asd发布了新的文献求助10
12秒前
13秒前
Ava应助淡淡菠萝采纳,获得10
15秒前
不知道发布了新的文献求助30
16秒前
幽默微笑发布了新的文献求助10
17秒前
18秒前
小蘑菇应助H-China采纳,获得10
19秒前
北过完成签到,获得积分10
20秒前
阳光总在风雨后完成签到,获得积分10
20秒前
22秒前
23秒前
caixia28256完成签到,获得积分10
23秒前
高贵季节发布了新的文献求助10
24秒前
24秒前
秋秋完成签到,获得积分10
27秒前
阳光的道消完成签到,获得积分10
27秒前
28秒前
28秒前
圆潘发布了新的文献求助10
28秒前
JamesPei应助刻苦的元风采纳,获得10
29秒前
传奇3应助nZk采纳,获得30
29秒前
29秒前
LZH发布了新的文献求助10
30秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140679
求助须知:如何正确求助?哪些是违规求助? 2791473
关于积分的说明 7799108
捐赠科研通 2447844
什么是DOI,文献DOI怎么找? 1302064
科研通“疑难数据库(出版商)”最低求助积分说明 626434
版权声明 601194