A Degradation Empirical-Model-Free Battery End-of-Life Prediction Framework Based on Gaussian Process Regression and Kalman Filter

卡尔曼滤波器 电池(电) 降级(电信) 计算机科学 克里金 可靠性(半导体) 颗粒过滤器 高斯过程 航程(航空) 高斯分布 控制理论(社会学) 工程类 人工智能 机器学习 功率(物理) 物理 控制(管理) 量子力学 航空航天工程 电信
作者
Jianwen Meng,Meiling Yue,Demba Diallo
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:9 (4): 4898-4908 被引量:29
标识
DOI:10.1109/tte.2022.3209629
摘要

Predicting the battery's end-of-life (EOL) with uncertainty quantification is critical for ensuring system safety and reliability. This article presents a hybrid framework for battery EOL prediction and its uncertainty assessment based on Gaussian process regression (GPR) and Kalman filter (KF). First, a KF-based empirical-model-free state tracking phase is applied for the available partial battery degradation data. Then, the original time series forecasting problem of degradation curves is converted to the prediction of the virtual degradation rate and acceleration. Next, the prediction of the virtual degradation rate and acceleration is executed by the iterative GPR multistep ahead prediction strategy with moving sliding windows (SWs). Finally, the uncertainty assessment is carried out based on the SW length determination process. The effectiveness of our proposed method is validated on the open-source lithium-ion battery degradation dataset from the University of Oxford. Extensive EOL prediction tests have been carried out from 40% (early-stage), 60% (middle-stage), and 80% (late-stage) of the dataset, respectively. Compared with the popular EOL prediction method within particle filter (PF) framework, the predicted mean EOL cycle by our method is closer to the true value with a smaller range of prediction uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guoguo完成签到,获得积分10
1秒前
1秒前
机智谷蕊发布了新的文献求助10
2秒前
blue发布了新的文献求助10
2秒前
2秒前
薛定谔的猫完成签到,获得积分10
2秒前
2秒前
谢谢发布了新的文献求助10
3秒前
dearcih完成签到,获得积分10
3秒前
Wone3完成签到 ,获得积分10
3秒前
后陡门的夏天完成签到,获得积分10
3秒前
ikun发布了新的文献求助10
3秒前
4秒前
4秒前
吴彦祖发布了新的文献求助10
4秒前
tw0125完成签到 ,获得积分10
5秒前
忧郁的期待完成签到,获得积分10
5秒前
5秒前
6秒前
隐形曼青应助八月宁静采纳,获得10
6秒前
6秒前
6秒前
TYT发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
柏达发布了新的文献求助10
7秒前
胖子完成签到,获得积分10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
SYLH应助子乔采纳,获得20
8秒前
8秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009871
求助须知:如何正确求助?哪些是违规求助? 3549812
关于积分的说明 11303839
捐赠科研通 3284342
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886393
科研通“疑难数据库(出版商)”最低求助积分说明 811406