Multiple Frame Splicing and Degradation Learning for Hyperspectral Imagery Super-Resolution

高光谱成像 计算机科学 人工智能 图像分辨率 计算机视觉 光学(聚焦) 瓶颈 遥感 模式识别(心理学) 地理 物理 光学 嵌入式系统
作者
Chenwei Deng,Xingshi Luo,Wenzheng Wang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 8389-8401 被引量:11
标识
DOI:10.1109/jstars.2022.3207777
摘要

Hyperspectral Imagery (HSI) is an emerging remote sensing technology to discriminate different remote sensing objects. However, the HSI spatial resolution is relatively low due to the trade-off in restricted physical hardware and various imaging conditions, restricting the subsequent object detection applications. At present, the Single Hyperspectral Super Resolution (SHSR) strategy has encountered the bottleneck on more precise details extraction, and the Fusion Hyperspectral Image Super Resolution (FHSR) strategy must need extra RGB/multispectral information which is not suitable for general HSI usage. Also, both types of current strategies focus less on the multiple degradation causes of low spatial resolution. In this paper, a step forward in designing a novel framework of multiple frame splicing strategy to greatly improve the SHSR quality, and applying multiple HSI degradation models to better fit the real degradation circumstance. Specifically, the framework is an end-to-end Super Resolution (SR) network that supersedes a single up-sampling module and removes complex attention residual model due to the same size of multiple splicing low-resolution input samples with high-resolution outputs. The effective framework will alleviate the vague at higher multiples, and accelerate the training convergence. Based on this framework, multiple degradation low-resolution samples can be simultaneously combined to fit better for the blind super-resolution result. Concretely, the degradation focus on the blur, noise, compression, and their combinations to simulate the real degradation. Experimental results on three different hyperspectral datasets demonstrate that the proposed MFSDM algorithm can significantly enhance the details in the recovered high-resolution hyperspectral images, and outperforms the state-of-the-art SHSR methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大脚关注了科研通微信公众号
刚刚
ZeKaWa发布了新的文献求助10
1秒前
司空豁应助HP采纳,获得10
1秒前
1秒前
3秒前
3秒前
李健的小迷弟应助不喜采纳,获得10
3秒前
完美世界应助肘子采纳,获得10
3秒前
激情的代曼完成签到,获得积分10
4秒前
4秒前
6秒前
道友等等我完成签到,获得积分0
6秒前
6秒前
土豆侠发布了新的文献求助10
8秒前
cg发布了新的文献求助10
8秒前
咩咩羊发布了新的文献求助20
8秒前
我爱学术发布了新的文献求助10
9秒前
学习猴完成签到,获得积分10
9秒前
吃三口茄子完成签到,获得积分10
9秒前
充电宝应助李lll采纳,获得10
10秒前
10秒前
张一发布了新的文献求助10
11秒前
11秒前
11秒前
周周发布了新的文献求助10
12秒前
12秒前
小丸子完成签到,获得积分10
13秒前
肘子完成签到,获得积分20
16秒前
小蘑菇应助天真的皓轩采纳,获得10
16秒前
不喜发布了新的文献求助10
16秒前
一介书生发布了新的文献求助10
16秒前
17秒前
踏实努力完成签到 ,获得积分20
17秒前
CodeCraft应助只如初采纳,获得10
18秒前
情怀应助周周采纳,获得10
19秒前
20秒前
21秒前
HUHU发布了新的文献求助10
23秒前
一介书生完成签到,获得积分10
24秒前
我爱学术完成签到,获得积分10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292433
求助须知:如何正确求助?哪些是违规求助? 2928738
关于积分的说明 8438439
捐赠科研通 2600836
什么是DOI,文献DOI怎么找? 1419309
科研通“疑难数据库(出版商)”最低求助积分说明 660268
邀请新用户注册赠送积分活动 642921