机械敏感通道
机械生物学
生物物理学
压电1
细胞内
机械转化
多细胞生物
材料科学
细胞外
离子通道
纳米尺度
纳米技术
偶氮苯
化学
细胞
细胞生物学
生物
聚合物
生物化学
受体
复合材料
作者
Heidi Peussa,Chiara Fedele,Huy Tran,Julia Fadjukov,Elina Mäntylä,Arri Priimägi,Soile Nymark,Teemu O. Ihalainen
标识
DOI:10.1101/2022.09.27.509666
摘要
Abstract Epithelial cells are in continuous dynamic biochemical and physical interaction with their extracellular environment. Ultimately, this interplay guides fundamental physiological processes. In these interactions, cells generate fast local and global transients of Ca 2+ ions, which act as key intracellular messengers. However, the mechanical triggers initiating these responses have remained unclear. Light-responsive materials offer intriguing possibilities to dynamically modify the physical niche of the cells. Here, we use a light-sensitive azobenzene-based glassy material that can be micropatterned with visible light to undergo spatiotemporally controlled deformations. The material allows mechanical stimulation of single cells or multicellular assemblies, offering unique opportunities for experimental mechanobiology. Real-time monitoring of consequential rapid intracellular Ca 2+ signals reveal that Piezo1 is the key mechanosensitive ion channel generating the Ca 2+ transients after nanoscale mechanical deformation of the cell culture substrate. Furthermore, our studies indicate that Piezo1 preferably responds to lateral material movement at cell-material interphase rather than to absolute topographical change of the substrate. Finally, experimentally verified computational modeling of the signaling kinetics suggests that the lateral mechanical stimulus triggers multiplexed intercellular signaling that involves Na + , highlighting the complexity of mechanical signaling in multicellular systems. These results give mechanistic understanding on how cells respond to material dynamics and deformations.
科研通智能强力驱动
Strongly Powered by AbleSci AI