How Positive and Negative Electronic Word of Mouth (eWOM) Affects Customers’ Intention to Use Social Commerce? A Dual-Stage Multi Group-SEM and ANN Analysis

结构方程建模 社会商业 拥挤 心理学 调解 对偶(语法数字) 社会化媒体 对比度(视觉) 技术接受模型 社会影响力 广告 社会心理学 营销 计算机科学 业务 认知心理学 可用性 人工智能 万维网 社会学 社会科学 人机交互 机器学习 艺术 文学类
作者
Alhamzah Alnoor,Victor Tiberius,Abbas Gatea Atiyah,Khai Wah Khaw,Sin Yin Teh,XinYing Chew,Sammar Abbas
出处
期刊:International Journal of Human-computer Interaction [Informa]
卷期号:40 (3): 808-837 被引量:84
标识
DOI:10.1080/10447318.2022.2125610
摘要

Advances in Web 2.0 technologies have led to the widespread assimilation of electronic commerce platforms as an innovative shopping method and an alternative to traditional shopping. However, due to pro-technology bias, scholars focus more on adopting technology, and slightly less attention has been given to the impact of electronic word of mouth (eWOM) on customers' intention to use social commerce. This study addresses the gap by examining the intention through exploring the effect of eWOM on males' and females' intentions and identifying the mediation of perceived crowding. To this end, we adopted a dual-stage multi-group structural equation modeling and artificial neural network (SEM-ANN) approach. We successfully extended the eWOM concept by integrating negative and positive factors and perceived crowding. The results reveal the causal and non-compensatory relationships between the constructs. The variables supported by the SEM analysis are adopted as the ANN model's input neurons. According to the natural significance obtained from the ANN approach, males' intentions to accept social commerce are related mainly to helping the company, followed by core functionalities. In contrast, females are highly influenced by technical aspects and mishandling. The ANN model predicts customers' intentions to use social commerce with an accuracy of 97%. We discuss the theoretical and practical implications of increasing customers' intention toward social commerce channels among consumers based on our findings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lxq发布了新的文献求助10
1秒前
甜甜映菡发布了新的文献求助10
2秒前
yw完成签到 ,获得积分10
2秒前
2秒前
2秒前
传奇3应助z18032采纳,获得10
3秒前
3秒前
六子发布了新的文献求助10
3秒前
4秒前
GD发布了新的文献求助10
4秒前
姜姜完成签到,获得积分10
5秒前
5秒前
NexusExplorer应助干净的新梅采纳,获得10
6秒前
李爱国应助cyw采纳,获得10
6秒前
科研通AI2S应助qq小兵采纳,获得10
7秒前
7秒前
red发布了新的文献求助10
7秒前
tesla发布了新的文献求助10
7秒前
11完成签到 ,获得积分10
7秒前
8秒前
罗预言本罗完成签到,获得积分10
8秒前
勤劳的香菇完成签到,获得积分10
9秒前
田様应助xu采纳,获得10
10秒前
晓军发布了新的文献求助10
10秒前
11秒前
Owen应助Ja采纳,获得10
11秒前
弹指一挥间完成签到 ,获得积分10
11秒前
11秒前
lxq完成签到,获得积分10
12秒前
和谐亦瑶完成签到,获得积分10
12秒前
12秒前
ZZZZ发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
15秒前
zzz完成签到,获得积分20
15秒前
kingwill应助37星河75采纳,获得20
16秒前
李爱国应助欢喜猕猴桃采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552652
求助须知:如何正确求助?哪些是违规求助? 3128698
关于积分的说明 9379308
捐赠科研通 2827873
什么是DOI,文献DOI怎么找? 1554775
邀请新用户注册赠送积分活动 725554
科研通“疑难数据库(出版商)”最低求助积分说明 715031