化学
醛
酮
己醛
巴(单位)
热力学
扩散
丁酮
有机化学
溶剂
催化作用
物理
气象学
作者
Bruno Zêzere,Simon Buchgeister,Sofia Faria,Inês Portugal,J.R. Gomes,Carlos M. Silva
标识
DOI:10.1016/j.molliq.2022.120480
摘要
For the accurate design, optimization and simulation of chemical processes limited by mass transfer kinetics it is important the knowledge of transport properties, namely, diffusion coefficients, D12. In this work, the D12 values of six unsaturated linear ketones (i.e., propanone, butanone, propan-2-one, propan-3-one, hexan-2-one and hexan-3-one) and three unsaturated linear aldehydes (i.e., butanal, pentanal and hexanal) in (compressed) liquid ethanol were measured at temperatures from 303.15 K to 333.15 K and pressures up to 150 bar. The D12 values of ketones are in the range of 1.28 × 10−5 – 2.89 × 10−5 cm2 s−1 and of the aldehydes are between 1.39 × 10−5 and 2.68 × 10−5 cm2 s−1. The general trends of D12 regarding temperature, pressure, Stokes-Einstein coordinate, and free volume are presented and discussed. The diffusivities of the various ketones position isomers and aldehyde/ketone isomers were statistically compared, being possible to conclude that the former ones exhibit indistinguishable diffusivities while different values appear for aldehydes/ketones isomers. Finally, five models and a machine learning algorithm from the literature were tested to predict/correlate the new data. It is suggested that the TLSM model should be the preferred approach for D12 prediction of linear unsaturated aldehydes and ketones in liquid compressed ethanol.
科研通智能强力驱动
Strongly Powered by AbleSci AI