MMSG-DTA: A Multimodal, Multiscale Model Based on Sequence and Graph Modalities for Drug-Target Affinity Prediction

稳健性(进化) 计算机科学 图形 机器学习 药物发现 人工智能 数据挖掘 模式识别(心理学) 化学 理论计算机科学 生物信息学 生物 生物化学 基因
作者
Jiahao Xu,Lei Ci,Bo Zhu,Guanhua Zhang,Linhua Jiang,Shixin Ye‐Lehmann,Wei Long
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01828
摘要

Drug-Target Affinity (DTA) prediction is a cornerstone of drug discovery and development, providing critical insights into the intricate interactions between candidate drugs and their biological targets. Despite its importance, existing methodologies often face significant limitations in capturing comprehensive global features from molecular graphs, which are essential for accurately characterizing drug properties. Furthermore, protein feature extraction is predominantly restricted to 1D amino acid sequences, which fail to adequately represent the spatial structures and complex functional regions of proteins. These shortcomings impede the development of models capable of fully elucidating the mechanisms underlying drug-target interactions. To overcome these challenges, we propose a multimodal, multiscale model based on Sequence and Graph Modalities for Drug-Target Affinity (MMSG-DTA) Prediction. The model combines graph neural networks with Transformers to effectively capture both local node-level features and global structural features of molecular graphs. Additionally, a graph-based modality is employed to improve the extraction of protein features from amino acid sequences. To further enhance the model's performance, an attention-based feature fusion module is incorporated to integrate diverse feature types, thereby strengthening its representation capacity and robustness. We evaluated MMSG-DTA on three public benchmark data sets─Davis, KIBA, and Metz─and the experimental results demonstrate that the proposed model outperforms several state-of-the-art methods in DTA prediction. These findings highlight the effectiveness of MMSG-DTA in advancing the accuracy and robustness of drug-target interaction modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
百步穿杨发布了新的文献求助20
1秒前
搬砖旭完成签到,获得积分10
1秒前
alai发布了新的文献求助10
3秒前
12345完成签到 ,获得积分10
3秒前
3秒前
ying发布了新的文献求助10
3秒前
5秒前
anthea发布了新的文献求助20
5秒前
bancheng完成签到,获得积分20
5秒前
6秒前
雪松发布了新的文献求助10
6秒前
7秒前
Xiaoxiao应助读书明智采纳,获得10
7秒前
搬砖旭发布了新的文献求助10
7秒前
7秒前
科目三应助幻烨烨采纳,获得10
9秒前
9秒前
bancheng发布了新的文献求助10
11秒前
研友_LJGoXn发布了新的文献求助10
11秒前
拔了晴天的向日葵完成签到,获得积分10
11秒前
13秒前
爱科研的小虞完成签到 ,获得积分10
13秒前
13秒前
14秒前
魔幻的乞发布了新的文献求助10
15秒前
呆萌路灯完成签到,获得积分10
15秒前
追忆完成签到,获得积分10
16秒前
美好的黛丝完成签到,获得积分10
17秒前
xzy998应助大块采纳,获得10
17秒前
思源应助bancheng采纳,获得10
17秒前
追风筝的人完成签到,获得积分20
17秒前
多和5的武器完成签到,获得积分10
18秒前
zoe完成签到 ,获得积分10
18秒前
Summer完成签到,获得积分10
20秒前
21秒前
21秒前
kl完成签到 ,获得积分10
22秒前
22秒前
完美的友蕊应助anthea采纳,获得10
23秒前
慕青应助DrWang采纳,获得10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966045
求助须知:如何正确求助?哪些是违规求助? 3511354
关于积分的说明 11157819
捐赠科研通 3245924
什么是DOI,文献DOI怎么找? 1793233
邀请新用户注册赠送积分活动 874278
科研通“疑难数据库(出版商)”最低求助积分说明 804304