MMSG-DTA: A Multimodal, Multiscale Model Based on Sequence and Graph Modalities for Drug-Target Affinity Prediction

稳健性(进化) 计算机科学 图形 机器学习 药物发现 人工智能 数据挖掘 模式识别(心理学) 化学 理论计算机科学 生物信息学 生物 生物化学 基因
作者
Jiahao Xu,Lei Ci,Bo Zhu,Guanhua Zhang,Linhua Jiang,Shixin Ye‐Lehmann,Wei Long
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:65 (2): 981-996 被引量:3
标识
DOI:10.1021/acs.jcim.4c01828
摘要

Drug-Target Affinity (DTA) prediction is a cornerstone of drug discovery and development, providing critical insights into the intricate interactions between candidate drugs and their biological targets. Despite its importance, existing methodologies often face significant limitations in capturing comprehensive global features from molecular graphs, which are essential for accurately characterizing drug properties. Furthermore, protein feature extraction is predominantly restricted to 1D amino acid sequences, which fail to adequately represent the spatial structures and complex functional regions of proteins. These shortcomings impede the development of models capable of fully elucidating the mechanisms underlying drug-target interactions. To overcome these challenges, we propose a multimodal, multiscale model based on Sequence and Graph Modalities for Drug-Target Affinity (MMSG-DTA) Prediction. The model combines graph neural networks with Transformers to effectively capture both local node-level features and global structural features of molecular graphs. Additionally, a graph-based modality is employed to improve the extraction of protein features from amino acid sequences. To further enhance the model's performance, an attention-based feature fusion module is incorporated to integrate diverse feature types, thereby strengthening its representation capacity and robustness. We evaluated MMSG-DTA on three public benchmark data sets─Davis, KIBA, and Metz─and the experimental results demonstrate that the proposed model outperforms several state-of-the-art methods in DTA prediction. These findings highlight the effectiveness of MMSG-DTA in advancing the accuracy and robustness of drug-target interaction modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
奥美拉唑发布了新的文献求助10
2秒前
板栗发布了新的文献求助20
2秒前
我是老大应助淡淡的航空采纳,获得10
3秒前
3秒前
3秒前
山河统一发布了新的文献求助30
3秒前
4秒前
4秒前
弼马温完成签到 ,获得积分10
4秒前
fcdawn完成签到,获得积分10
4秒前
4秒前
ss发布了新的文献求助30
4秒前
蛙蛙完成签到,获得积分0
5秒前
无可匹敌的饭量完成签到,获得积分10
5秒前
上官若男应助小潘采纳,获得10
5秒前
ding应助hlt采纳,获得10
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
前前前世完成签到,获得积分10
7秒前
8秒前
弼马温关注了科研通微信公众号
8秒前
可爱迪发布了新的文献求助10
8秒前
健壮的化蛹应助顺心的骁采纳,获得10
9秒前
小满发布了新的文献求助10
9秒前
ss完成签到 ,获得积分10
9秒前
tt完成签到,获得积分10
10秒前
10秒前
10秒前
fish1998完成签到,获得积分10
10秒前
顾矜应助优雅尔芙采纳,获得10
10秒前
Mr祥发布了新的文献求助10
11秒前
爬不起来发布了新的文献求助10
11秒前
11秒前
12秒前
CCCC完成签到,获得积分20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776435
求助须知:如何正确求助?哪些是违规求助? 5629479
关于积分的说明 15442901
捐赠科研通 4908608
什么是DOI,文献DOI怎么找? 2641332
邀请新用户注册赠送积分活动 1589287
关于科研通互助平台的介绍 1543910