MMSG-DTA: A Multimodal, Multiscale Model Based on Sequence and Graph Modalities for Drug-Target Affinity Prediction

稳健性(进化) 计算机科学 图形 机器学习 药物发现 人工智能 数据挖掘 模式识别(心理学) 化学 理论计算机科学 生物信息学 生物 生物化学 基因
作者
Jiahao Xu,Lei Ci,Bo Zhu,Guanhua Zhang,Linhua Jiang,Shixin Ye‐Lehmann,Wei Long
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:65 (2): 981-996 被引量:3
标识
DOI:10.1021/acs.jcim.4c01828
摘要

Drug-Target Affinity (DTA) prediction is a cornerstone of drug discovery and development, providing critical insights into the intricate interactions between candidate drugs and their biological targets. Despite its importance, existing methodologies often face significant limitations in capturing comprehensive global features from molecular graphs, which are essential for accurately characterizing drug properties. Furthermore, protein feature extraction is predominantly restricted to 1D amino acid sequences, which fail to adequately represent the spatial structures and complex functional regions of proteins. These shortcomings impede the development of models capable of fully elucidating the mechanisms underlying drug-target interactions. To overcome these challenges, we propose a multimodal, multiscale model based on Sequence and Graph Modalities for Drug-Target Affinity (MMSG-DTA) Prediction. The model combines graph neural networks with Transformers to effectively capture both local node-level features and global structural features of molecular graphs. Additionally, a graph-based modality is employed to improve the extraction of protein features from amino acid sequences. To further enhance the model's performance, an attention-based feature fusion module is incorporated to integrate diverse feature types, thereby strengthening its representation capacity and robustness. We evaluated MMSG-DTA on three public benchmark data sets─Davis, KIBA, and Metz─and the experimental results demonstrate that the proposed model outperforms several state-of-the-art methods in DTA prediction. These findings highlight the effectiveness of MMSG-DTA in advancing the accuracy and robustness of drug-target interaction modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chenly发布了新的文献求助30
1秒前
123完成签到 ,获得积分10
1秒前
1秒前
AyraN完成签到,获得积分10
1秒前
1秒前
2秒前
小牛牛发布了新的文献求助10
2秒前
2秒前
LLHHZZ发布了新的文献求助10
2秒前
2秒前
大模型应助泯珉采纳,获得10
3秒前
KKZNB发布了新的文献求助10
3秒前
李健的小迷弟应助石头采纳,获得10
3秒前
wwwwwwww发布了新的文献求助10
3秒前
忧伤的冰彤完成签到,获得积分10
3秒前
玄月发布了新的文献求助10
3秒前
jias完成签到,获得积分10
4秒前
丘比特应助贾舒涵采纳,获得10
4秒前
范兆飞发布了新的文献求助10
5秒前
喜悦绿旋发布了新的文献求助10
5秒前
lixiang发布了新的文献求助10
5秒前
5秒前
搜集达人应助Will采纳,获得10
5秒前
6秒前
6秒前
只呜朱发布了新的文献求助10
7秒前
天天快乐应助昼夜本色采纳,获得10
7秒前
ywyw完成签到 ,获得积分10
7秒前
可爱的函函应助林云夕采纳,获得10
8秒前
领导范儿应助Potato采纳,获得30
8秒前
8秒前
9秒前
9秒前
Tingting完成签到 ,获得积分10
9秒前
福路发布了新的文献求助10
9秒前
9秒前
9秒前
搜集达人应助wang采纳,获得10
10秒前
科研之路完成签到,获得积分10
10秒前
刚刚发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719182
求助须知:如何正确求助?哪些是违规求助? 5255402
关于积分的说明 15287996
捐赠科研通 4869073
什么是DOI,文献DOI怎么找? 2614641
邀请新用户注册赠送积分活动 1564561
关于科研通互助平台的介绍 1521851