清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MMSG-DTA: A Multimodal, Multiscale Model Based on Sequence and Graph Modalities for Drug-Target Affinity Prediction

稳健性(进化) 计算机科学 图形 机器学习 药物发现 人工智能 数据挖掘 模式识别(心理学) 化学 理论计算机科学 生物信息学 生物 生物化学 基因
作者
Jiahao Xu,Lei Ci,Bo Zhu,Guanhua Zhang,Linhua Jiang,Shixin Ye‐Lehmann,Wei Long
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:65 (2): 981-996 被引量:3
标识
DOI:10.1021/acs.jcim.4c01828
摘要

Drug-Target Affinity (DTA) prediction is a cornerstone of drug discovery and development, providing critical insights into the intricate interactions between candidate drugs and their biological targets. Despite its importance, existing methodologies often face significant limitations in capturing comprehensive global features from molecular graphs, which are essential for accurately characterizing drug properties. Furthermore, protein feature extraction is predominantly restricted to 1D amino acid sequences, which fail to adequately represent the spatial structures and complex functional regions of proteins. These shortcomings impede the development of models capable of fully elucidating the mechanisms underlying drug-target interactions. To overcome these challenges, we propose a multimodal, multiscale model based on Sequence and Graph Modalities for Drug-Target Affinity (MMSG-DTA) Prediction. The model combines graph neural networks with Transformers to effectively capture both local node-level features and global structural features of molecular graphs. Additionally, a graph-based modality is employed to improve the extraction of protein features from amino acid sequences. To further enhance the model's performance, an attention-based feature fusion module is incorporated to integrate diverse feature types, thereby strengthening its representation capacity and robustness. We evaluated MMSG-DTA on three public benchmark data sets─Davis, KIBA, and Metz─and the experimental results demonstrate that the proposed model outperforms several state-of-the-art methods in DTA prediction. These findings highlight the effectiveness of MMSG-DTA in advancing the accuracy and robustness of drug-target interaction modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
10秒前
顾灵毓发布了新的文献求助10
12秒前
脑洞疼应助科研通管家采纳,获得10
22秒前
李健应助顾灵毓采纳,获得10
22秒前
34秒前
45秒前
50秒前
顾灵毓发布了新的文献求助10
53秒前
1分钟前
HJJ完成签到 ,获得积分10
1分钟前
1分钟前
顾灵毓完成签到,获得积分10
1分钟前
tt完成签到,获得积分10
1分钟前
1分钟前
拼搏问薇完成签到 ,获得积分10
1分钟前
1分钟前
ZYP发布了新的文献求助10
1分钟前
1分钟前
doublenine18完成签到,获得积分10
1分钟前
科研通AI6应助doublenine18采纳,获得10
2分钟前
2分钟前
无极微光应助科研通管家采纳,获得20
2分钟前
2分钟前
慕青应助Xiu采纳,获得10
2分钟前
HYQ完成签到 ,获得积分10
3分钟前
3分钟前
Xiu发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Xiu完成签到,获得积分10
3分钟前
3分钟前
4分钟前
所所应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
笑傲完成签到,获得积分10
5分钟前
曦耀发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639753
求助须知:如何正确求助?哪些是违规求助? 4750316
关于积分的说明 15007305
捐赠科研通 4797968
什么是DOI,文献DOI怎么找? 2564061
邀请新用户注册赠送积分活动 1522938
关于科研通互助平台的介绍 1482591