MMSG-DTA: A Multimodal, Multiscale Model Based on Sequence and Graph Modalities for Drug-Target Affinity Prediction

稳健性(进化) 计算机科学 图形 机器学习 药物发现 人工智能 数据挖掘 模式识别(心理学) 化学 理论计算机科学 生物信息学 生物 生物化学 基因
作者
Jiahao Xu,Lei Ci,Bo Zhu,Guanhua Zhang,Linhua Jiang,Shixin Ye‐Lehmann,Wei Long
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01828
摘要

Drug-Target Affinity (DTA) prediction is a cornerstone of drug discovery and development, providing critical insights into the intricate interactions between candidate drugs and their biological targets. Despite its importance, existing methodologies often face significant limitations in capturing comprehensive global features from molecular graphs, which are essential for accurately characterizing drug properties. Furthermore, protein feature extraction is predominantly restricted to 1D amino acid sequences, which fail to adequately represent the spatial structures and complex functional regions of proteins. These shortcomings impede the development of models capable of fully elucidating the mechanisms underlying drug-target interactions. To overcome these challenges, we propose a multimodal, multiscale model based on Sequence and Graph Modalities for Drug-Target Affinity (MMSG-DTA) Prediction. The model combines graph neural networks with Transformers to effectively capture both local node-level features and global structural features of molecular graphs. Additionally, a graph-based modality is employed to improve the extraction of protein features from amino acid sequences. To further enhance the model's performance, an attention-based feature fusion module is incorporated to integrate diverse feature types, thereby strengthening its representation capacity and robustness. We evaluated MMSG-DTA on three public benchmark data sets─Davis, KIBA, and Metz─and the experimental results demonstrate that the proposed model outperforms several state-of-the-art methods in DTA prediction. These findings highlight the effectiveness of MMSG-DTA in advancing the accuracy and robustness of drug-target interaction modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文静的雨筠完成签到 ,获得积分10
1秒前
小王同学完成签到,获得积分10
1秒前
1秒前
milan001发布了新的文献求助20
1秒前
1秒前
2秒前
调皮惜天完成签到,获得积分10
2秒前
循环完成签到,获得积分20
3秒前
3秒前
3秒前
三寿完成签到,获得积分10
3秒前
每天都要开心完成签到,获得积分10
3秒前
多多肉完成签到,获得积分10
4秒前
gomm完成签到,获得积分10
4秒前
也无风雨也无晴完成签到,获得积分10
4秒前
4秒前
Sophie完成签到,获得积分10
5秒前
糖醋可乐发布了新的文献求助10
5秒前
滴迪氐媂完成签到 ,获得积分10
5秒前
浮游应助aqiuyuehe采纳,获得10
5秒前
不劳而获完成签到 ,获得积分10
6秒前
金色稻谷完成签到,获得积分20
6秒前
feilei完成签到,获得积分10
6秒前
哈哈发布了新的文献求助10
6秒前
fuguier发布了新的文献求助10
6秒前
HMZ完成签到,获得积分10
6秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
8秒前
花藏影完成签到,获得积分10
8秒前
完美世界应助琦琦采纳,获得10
9秒前
zhuxl完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4598108
求助须知:如何正确求助?哪些是违规求助? 4009392
关于积分的说明 12410910
捐赠科研通 3688745
什么是DOI,文献DOI怎么找? 2033396
邀请新用户注册赠送积分活动 1066690
科研通“疑难数据库(出版商)”最低求助积分说明 951763