MMSG-DTA: A Multimodal, Multiscale Model Based on Sequence and Graph Modalities for Drug-Target Affinity Prediction

稳健性(进化) 计算机科学 图形 机器学习 药物发现 人工智能 数据挖掘 模式识别(心理学) 化学 理论计算机科学 生物信息学 生物 生物化学 基因
作者
Jiahao Xu,Lei Ci,Bo Zhu,Guanhua Zhang,Linhua Jiang,Shixin Ye‐Lehmann,Wei Long
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:65 (2): 981-996 被引量:3
标识
DOI:10.1021/acs.jcim.4c01828
摘要

Drug-Target Affinity (DTA) prediction is a cornerstone of drug discovery and development, providing critical insights into the intricate interactions between candidate drugs and their biological targets. Despite its importance, existing methodologies often face significant limitations in capturing comprehensive global features from molecular graphs, which are essential for accurately characterizing drug properties. Furthermore, protein feature extraction is predominantly restricted to 1D amino acid sequences, which fail to adequately represent the spatial structures and complex functional regions of proteins. These shortcomings impede the development of models capable of fully elucidating the mechanisms underlying drug-target interactions. To overcome these challenges, we propose a multimodal, multiscale model based on Sequence and Graph Modalities for Drug-Target Affinity (MMSG-DTA) Prediction. The model combines graph neural networks with Transformers to effectively capture both local node-level features and global structural features of molecular graphs. Additionally, a graph-based modality is employed to improve the extraction of protein features from amino acid sequences. To further enhance the model's performance, an attention-based feature fusion module is incorporated to integrate diverse feature types, thereby strengthening its representation capacity and robustness. We evaluated MMSG-DTA on three public benchmark data sets─Davis, KIBA, and Metz─and the experimental results demonstrate that the proposed model outperforms several state-of-the-art methods in DTA prediction. These findings highlight the effectiveness of MMSG-DTA in advancing the accuracy and robustness of drug-target interaction modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Dong发布了新的文献求助10
1秒前
1秒前
啊呜完成签到,获得积分10
2秒前
腼腆的寒风完成签到 ,获得积分10
4秒前
4秒前
蓝天应助水123采纳,获得10
6秒前
成就映冬完成签到,获得积分20
6秒前
嵩嵩发布了新的文献求助10
8秒前
唠叨的严青完成签到,获得积分10
9秒前
nyt发布了新的文献求助10
10秒前
蓝天发布了新的文献求助10
11秒前
js25发布了新的文献求助20
13秒前
13秒前
墨墨完成签到,获得积分10
14秒前
14秒前
无聊的小懒虫完成签到 ,获得积分10
15秒前
16秒前
Ava应助与在天上飞采纳,获得10
16秒前
雪梅完成签到 ,获得积分10
17秒前
成就映冬发布了新的文献求助10
18秒前
18秒前
20秒前
yuanquaner完成签到,获得积分10
20秒前
充电宝应助科研通管家采纳,获得10
22秒前
FashionBoy应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
充电宝应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
李爱国应助科研通管家采纳,获得10
22秒前
22秒前
深情安青应助科研通管家采纳,获得10
22秒前
zhoukang应助科研通管家采纳,获得20
22秒前
23秒前
buno应助老虎皮采纳,获得10
24秒前
U2发布了新的文献求助10
24秒前
兔子发布了新的文献求助10
24秒前
Tongsiying完成签到,获得积分10
26秒前
czr完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602024
求助须知:如何正确求助?哪些是违规求助? 4687320
关于积分的说明 14848466
捐赠科研通 4682665
什么是DOI,文献DOI怎么找? 2539670
邀请新用户注册赠送积分活动 1506420
关于科研通互助平台的介绍 1471359