物理
瞬态(计算机编程)
人工神经网络
比例(比率)
自然对流
统计物理学
对流
机械
人工智能
量子力学
计算机科学
操作系统
作者
Nagahiro Ohashi,Nam Nguyen,Leslie K. Hwang,Beomjin Kwon
摘要
This study employs physics-informed neural networks (PINNs) to reconstruct multiple flow fields in a transient natural convection system solely based on instantaneous temperature data at an arbitrary moment. Transient convection problems present reconstruction challenges due to the temporal variability of fields across different flow phases. In general, large reconstruction errors are observed during the incipient phase, while the quasi-steady phase exhibits relatively smaller errors, reduced by a factor of 2–4. We hypothesize that reconstruction errors vary across different flow phases due to the changing solution space of a PINN, inferred from the temporal gradients of the fields. Furthermore, we find that reconstruction errors tend to accumulate in regions where the spatial gradients are smaller than the order of 10−6, likely due to the vanishing gradient phenomenon. In convection phenomena, field variations often manifest across multiple scales in space. However, PINN-based reconstruction tends to preserve larger-scale variations, while smaller-scale variations become less pronounced due to the vanishing gradient problem. To mitigate the errors associated with vanishing gradients, we introduce a multi-scale approach that determines scaling constants for the PINN inputs and reformulates inputs across multiple scales. This approach improves the maximum and mean errors by 72.2% and 6.4%, respectively. Our research provides insight into the behavior of PINNs when applied to transient convection problems with large solution space and field variations across multiple scales.
科研通智能强力驱动
Strongly Powered by AbleSci AI