Unlocking the Potential of Weakly Labeled Data: A Co-Evolutionary Learning Framework for Abnormality Detection and Report Generation

异常 计算机科学 医学影像学 人工智能 模式识别(心理学) 医学 精神科
作者
Jinghan Sun,Dong Wei,Zhe Xu,Donghuan Lu,Hong Liu,Hong Wang,Sotirios A. Tsaftaris,Steven McDonagh,Yefeng Zheng,Liansheng Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3516954
摘要

Anatomical abnormality detection and report generation of chest X-ray (CXR) are two essential tasks in clinical practice. The former aims at localizing and characterizing cardiopulmonary radiological findings in CXRs, while the latter summarizes the findings in a detailed report for further diagnosis and treatment. Existing methods often focused on either task separately, ignoring their correlation. This work proposes a co-evolutionary abnormality detection and report generation (CoE-DG) framework. The framework utilizes both fully labeled (with bounding box annotations and clinical reports) and weakly labeled (with reports only) data to achieve mutual promotion between the abnormality detection and report generation tasks. Specifically, we introduce a bi-directional information interaction strategy with generator-guided information propagation (GIP) and detector-guided information propagation (DIP). For semi-supervised abnormality detection, GIP takes the informative feature extracted by the generator as an auxiliary input to the detector and uses the generator's prediction to refine the detector's pseudo labels. We further propose an intra-image-modal self-adaptive non-maximum suppression module (SA-NMS). This module dynamically rectifies pseudo detection labels generated by the teacher detection model with high-confidence predictions by the student. Inversely, for report generation, DIP takes the abnormalities' categories and locations predicted by the detector as input and guidance for the generator to improve the generated reports. Finally, a co-evolutionary training strategy is implemented to iteratively conduct GIP and DIP and consistently improve both tasks' performance. Experimental results on two public CXR datasets demonstrate CoE-DG's superior performance to several up-to-date object detection, report generation, and unified models. Our code is available at https://github.com/jinghanSunn/CoE-DG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zly发布了新的文献求助10
刚刚
雨水完成签到,获得积分10
1秒前
无辜的可乐完成签到 ,获得积分10
1秒前
静静完成签到 ,获得积分10
2秒前
悦耳静枫完成签到,获得积分10
2秒前
整齐小猫咪完成签到,获得积分10
3秒前
4秒前
4秒前
星期八完成签到,获得积分10
4秒前
大模型应助小李采纳,获得10
4秒前
无辜的可乐关注了科研通微信公众号
4秒前
飘逸宫苴完成签到,获得积分10
5秒前
大壮_0808完成签到,获得积分10
5秒前
6秒前
科研通AI5应助傻傻的破茧采纳,获得30
7秒前
爱学习的叭叭完成签到,获得积分10
7秒前
8秒前
8秒前
LLRO发布了新的文献求助10
9秒前
开放映安发布了新的文献求助10
10秒前
10秒前
wang完成签到,获得积分10
11秒前
guochrn发布了新的文献求助10
11秒前
Vi完成签到,获得积分10
13秒前
香蕉觅云应助石文采纳,获得10
15秒前
彭于彦祖应助萝卜采纳,获得20
15秒前
无花果应助伶俐的不尤采纳,获得10
15秒前
young完成签到,获得积分10
15秒前
风趣姿完成签到 ,获得积分10
16秒前
123发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
淡然冬灵应助nana采纳,获得10
19秒前
笑笑要学习完成签到,获得积分10
19秒前
LLRO完成签到,获得积分10
20秒前
20秒前
小二郎应助平凡的世界采纳,获得10
20秒前
21秒前
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734777
求助须知:如何正确求助?哪些是违规求助? 3278715
关于积分的说明 10010876
捐赠科研通 2995383
什么是DOI,文献DOI怎么找? 1643405
邀请新用户注册赠送积分活动 781153
科研通“疑难数据库(出版商)”最低求助积分说明 749285