Health AI Developer Foundations

计算机科学 数据科学 软件工程
作者
Atilla P. Kiraly,Sebastien Baur,Kenneth A. Philbrick,Fereshteh Mahvar,Liron Yatziv,Tiffany Chen,Bram Sterling,Nick George,F Guimaraes Silvio Jamil,Jing Tang,K. V. Bailey,Faruk Ahmed,Akshay Goel,Abbi Ward,Yang Lin,Andrew Sellergren,Yossi Matias,Avinatan Hassidim,Shravya Shetty,D. I. Golden,Shekoofeh Azizi,David F. Steiner,Yun Liu,Tim Thelin,Rory Pilgrim,Can Kirmizibayrak
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2411.15128
摘要

Robust medical Machine Learning (ML) models have the potential to revolutionize healthcare by accelerating clinical research, improving workflows and outcomes, and producing novel insights or capabilities. Developing such ML models from scratch is cost prohibitive and requires substantial compute, data, and time (e.g., expert labeling). To address these challenges, we introduce Health AI Developer Foundations (HAI-DEF), a suite of pre-trained, domain-specific foundation models, tools, and recipes to accelerate building ML for health applications. The models cover various modalities and domains, including radiology (X-rays and computed tomography), histopathology, dermatological imaging, and audio. These models provide domain specific embeddings that facilitate AI development with less labeled data, shorter training times, and reduced computational costs compared to traditional approaches. In addition, we utilize a common interface and style across these models, and prioritize usability to enable developers to integrate HAI-DEF efficiently. We present model evaluations across various tasks and conclude with a discussion of their application and evaluation, covering the importance of ensuring efficacy, fairness, and equity. Finally, while HAI-DEF and specifically the foundation models lower the barrier to entry for ML in healthcare, we emphasize the importance of validation with problem- and population-specific data for each desired usage setting. This technical report will be updated over time as more modalities and features are added.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yolenders完成签到 ,获得积分10
刚刚
充电宝应助周小鱼采纳,获得10
5秒前
xiaogu发布了新的文献求助10
5秒前
李健的小迷弟应助纠纠采纳,获得10
6秒前
赢赢赢赢完成签到 ,获得积分10
6秒前
Hermie发布了新的文献求助10
7秒前
Ergou完成签到 ,获得积分20
9秒前
grs完成签到,获得积分10
9秒前
小滨发布了新的文献求助10
9秒前
Tacamily完成签到,获得积分10
10秒前
11秒前
Ergou发布了新的文献求助10
12秒前
wmufwd完成签到,获得积分10
12秒前
你长得很下饭所以完成签到,获得积分10
13秒前
安安完成签到,获得积分10
14秒前
赘婿应助ma789采纳,获得10
14秒前
Hermie完成签到,获得积分20
17秒前
周小鱼发布了新的文献求助10
18秒前
19秒前
19秒前
xiaogu完成签到,获得积分10
22秒前
JamesPei应助mk采纳,获得10
23秒前
瘦瘦山灵完成签到 ,获得积分10
23秒前
解泽星完成签到,获得积分10
23秒前
二十二完成签到 ,获得积分10
25秒前
26秒前
纠纠发布了新的文献求助10
26秒前
常温完成签到,获得积分10
28秒前
高挑的若雁完成签到 ,获得积分10
29秒前
文茵发布了新的文献求助10
29秒前
绿色的大嘴鸟完成签到 ,获得积分10
32秒前
大模型应助合适的柏柳采纳,获得10
32秒前
34秒前
纠纠完成签到,获得积分10
34秒前
infinite完成签到,获得积分10
35秒前
36秒前
38秒前
40秒前
spark810应助miles采纳,获得30
40秒前
40秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Mesopotamian Divination Texts: Conversing with the Gods 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3289481
求助须知:如何正确求助?哪些是违规求助? 2926455
关于积分的说明 8427277
捐赠科研通 2597697
什么是DOI,文献DOI怎么找? 1417299
科研通“疑难数据库(出版商)”最低求助积分说明 659669
邀请新用户注册赠送积分活动 642133