CNN-BiLSTM combined with Bayesian optimization for short-term wind power prediction

期限(时间) 贝叶斯优化 计算机科学 贝叶斯概率 风力发电 人工智能 机器学习 模式识别(心理学) 工程类 电气工程 量子力学 物理
作者
Yahao Song,Yajun Wu,Shuaipeng Duan,Chengfeng Dou,Bei Liu,Bing Hou
出处
期刊:Journal of physics [IOP Publishing]
卷期号:2938 (1): 012002-012002
标识
DOI:10.1088/1742-6596/2938/1/012002
摘要

Abstract Aiming at the difficulty of wind power prediction due to the volatility and uncertainty of wind power generation, this paper proposes a hybrid model based on Convolutional Neural Network (CNN) and Bidirectional Long Short-Term Memory Network (BiLSTM), and optimises the model hyper-parameters using Bayesian Optimization Algorithm (BO) in order to improve the prediction accuracy. Firstly, the input features that are highly correlated with wind power are screened using the Pearson Coefficient method (PCC). Then, CNN is used to extract features from the screened data. Next, the features extracted by CNN are further processed using BiLSTM to capture the long-term dependence and bi-directional information of the time series data. Finally, the hyperparameters of the model are adjusted by BO to obtain the best prediction performance. The experimental results show that the proposed BO-CNN-BiLSTM model reduces the RMSE by 35.3%, the MAE by 46.7%, and the R 2 improves by 1.5% compared with the BiLSTM model.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
phj完成签到,获得积分10
3秒前
gsokok完成签到 ,获得积分10
4秒前
闪闪星星完成签到,获得积分10
8秒前
追寻清完成签到,获得积分10
10秒前
11秒前
鱼淼完成签到,获得积分10
11秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
14秒前
14秒前
慕青应助科研通管家采纳,获得30
14秒前
jueding应助科研通管家采纳,获得10
14秒前
Cooper应助科研通管家采纳,获得10
14秒前
yznfly应助科研通管家采纳,获得50
14秒前
桐桐应助科研通管家采纳,获得30
14秒前
无极微光应助科研通管家采纳,获得20
14秒前
14秒前
科研通AI2S应助科研通管家采纳,获得20
14秒前
15秒前
tg2024完成签到,获得积分10
16秒前
铜锣烧发布了新的文献求助10
16秒前
嘻嘻发布了新的文献求助10
21秒前
余慵慵完成签到 ,获得积分10
26秒前
27秒前
33秒前
wsq完成签到,获得积分10
37秒前
38秒前
43秒前
拾捌发布了新的文献求助10
44秒前
Jasper应助苹果酸奶采纳,获得10
54秒前
55秒前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5852126
求助须知:如何正确求助?哪些是违规求助? 6276113
关于积分的说明 15627658
捐赠科研通 4968034
什么是DOI,文献DOI怎么找? 2678871
邀请新用户注册赠送积分活动 1623127
关于科研通互助平台的介绍 1579506