Distinguishing deception from its confounds by improving the validity of fMRI-based neural prediction

欺骗 心理学 意识的神经相关物 人工神经网络 认知心理学 人工智能 计算机科学 神经科学 社会心理学 认知
作者
Sangil Lee,R. Niu,Lusha Zhu,Andrew S. Kayser,Ming Hsu
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (50)
标识
DOI:10.1073/pnas.2412881121
摘要

Deception is a universal human behavior. Yet longstanding skepticism about the validity of measures used to characterize the biological mechanisms underlying deceptive behavior has relegated such studies to the scientific periphery. Here, we address these fundamental questions by applying machine learning methods and functional magnetic resonance imaging (fMRI) to signaling games capturing motivated deception in human participants. First, we develop an approach to test for the presence of confounding processes and validate past skepticism by showing that much of the predictive power of neural predictors trained on deception data comes from processes other than deception. Specifically, we demonstrate that discriminant validity is compromised by the predictor’s ability to predict behavior in a control task that does not involve deception. Second, we show that the presence of confounding signals need not be fatal and that the validity of the neural predictor can be improved by removing confounding signals while retaining those associated with the task of interest. To this end, we develop a “dual-goal tuning” approach in which, beyond the typical goal of predicting the behavior of interest, the predictor also incorporates a second compulsory goal that enforces chance performance in the control task. Together, these findings provide a firmer scientific foundation for understanding the neural basis of a neglected class of behavior, and they suggest an approach for improving validity of neural predictors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
拓跋雨梅应助科研通管家采纳,获得10
1秒前
翼静应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
普通鹏发布了新的文献求助10
1秒前
糖果乖乖完成签到 ,获得积分10
2秒前
5秒前
Alicia完成签到 ,获得积分10
5秒前
wanci应助bai123采纳,获得10
5秒前
隐形曼青应助俊男采纳,获得10
6秒前
7秒前
8秒前
普通鹏完成签到,获得积分10
9秒前
9秒前
sssss完成签到,获得积分10
10秒前
Eason发布了新的文献求助10
11秒前
bai123完成签到,获得积分10
11秒前
Wu发布了新的文献求助10
12秒前
宜醉宜游宜睡应助leo采纳,获得10
13秒前
mmmmmmgm完成签到 ,获得积分10
15秒前
ddfox86应助嗯呐采纳,获得20
16秒前
16秒前
善学以致用应助李慧敏采纳,获得10
18秒前
英姑应助YK采纳,获得10
19秒前
Eason完成签到,获得积分20
20秒前
王王王发布了新的文献求助10
20秒前
20秒前
qq78910完成签到,获得积分10
22秒前
木子李发布了新的文献求助10
22秒前
迷人的Jack发布了新的文献求助10
29秒前
木子李完成签到,获得积分10
31秒前
33秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
密码函数 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3209919
求助须知:如何正确求助?哪些是违规求助? 2859364
关于积分的说明 8118965
捐赠科研通 2524889
什么是DOI,文献DOI怎么找? 1358539
科研通“疑难数据库(出版商)”最低求助积分说明 642814
邀请新用户注册赠送积分活动 614601