Distinguishing deception from its confounds by improving the validity of fMRI-based neural prediction

欺骗 心理学 功能磁共振成像 任务(项目管理) 怀疑论 预测能力 预测效度 外部有效性 人工神经网络 认知心理学 人工智能 机器学习 计算机科学 神经科学 社会心理学 发展心理学 哲学 管理 认识论 经济
作者
Sangil Lee,R. Niu,Lusha Zhu,Andrew S. Kayser,Ming Hsu
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (50) 被引量:1
标识
DOI:10.1073/pnas.2412881121
摘要

Deception is a universal human behavior. Yet longstanding skepticism about the validity of measures used to characterize the biological mechanisms underlying deceptive behavior has relegated such studies to the scientific periphery. Here, we address these fundamental questions by applying machine learning methods and functional magnetic resonance imaging (fMRI) to signaling games capturing motivated deception in human participants. First, we develop an approach to test for the presence of confounding processes and validate past skepticism by showing that much of the predictive power of neural predictors trained on deception data comes from processes other than deception. Specifically, we demonstrate that discriminant validity is compromised by the predictor’s ability to predict behavior in a control task that does not involve deception. Second, we show that the presence of confounding signals need not be fatal and that the validity of the neural predictor can be improved by removing confounding signals while retaining those associated with the task of interest. To this end, we develop a “dual-goal tuning” approach in which, beyond the typical goal of predicting the behavior of interest, the predictor also incorporates a second compulsory goal that enforces chance performance in the control task. Together, these findings provide a firmer scientific foundation for understanding the neural basis of a neglected class of behavior, and they suggest an approach for improving validity of neural predictors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
慕课魔芋发布了新的文献求助10
1秒前
AA1Z发布了新的文献求助10
1秒前
舒适涵山完成签到,获得积分10
1秒前
小鼠星球发布了新的文献求助10
2秒前
喵小权关注了科研通微信公众号
2秒前
白羽佳发布了新的文献求助10
5秒前
王明慧发布了新的文献求助10
5秒前
23lk发布了新的文献求助10
5秒前
花生仔应助小小怪采纳,获得10
6秒前
美丽的楼房完成签到 ,获得积分10
7秒前
李知恩完成签到 ,获得积分10
7秒前
Present完成签到,获得积分10
8秒前
8秒前
9秒前
斯文败类应助23lk采纳,获得10
10秒前
12秒前
12秒前
12秒前
12秒前
14秒前
15秒前
16秒前
英俊的铭应助mint采纳,获得10
18秒前
田様应助yyxx采纳,获得10
18秒前
6666发布了新的文献求助10
20秒前
豪士赋完成签到,获得积分10
20秒前
Steven发布了新的文献求助10
20秒前
ziyewutong完成签到,获得积分10
21秒前
21秒前
22秒前
喵小权发布了新的文献求助10
23秒前
无花果应助梅溪湖西采纳,获得10
24秒前
hyx发布了新的文献求助10
24秒前
25秒前
26秒前
残山醉梦完成签到,获得积分10
26秒前
PSY发布了新的文献求助10
26秒前
27秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956621
求助须知:如何正确求助?哪些是违规求助? 3502685
关于积分的说明 11109755
捐赠科研通 3233502
什么是DOI,文献DOI怎么找? 1787408
邀请新用户注册赠送积分活动 870676
科研通“疑难数据库(出版商)”最低求助积分说明 802143