Revealing Crucial Influences of Boron Support on Regulating Geometric and Electronic Structures of 3D Catalyst for Hydrogen Evolution and Oxygen Reduction Reactions
Building insights into the structure–performance relationship of catalysts has been emphasized recently. However, it remains a challenge due to catalysts' various and complex structures, especially the easily overlooked influence of the support material. Here, we reveal the crucial influences of boron introduction on synthesizing 3D carbon nanotube monoliths with embedded multistate Co metals, i.e., single atoms, clusters, and nanoparticles (Co-BNCNTs), by an interesting chemical blowing-assisted calcination method. The boron introduction can contribute to forming captivating boron–nitrogen pairs, shaping a 3D frame, and regulating electronic structure. The 3D Co-BNCNT monoliths present good catalytic performance for both the hydrogen evolution reaction (HER) at all pH values and the oxygen reduction reaction (ORR). The theoretical calculations indicate that the B incorporation in Co-NCNTs can optimize the free energy of adsorbed hydrogen and facilitate the O2 adsorption and the protonation of the O2* species. Furthermore, the Co-BNCNTs-based zinc–air battery provides great battery performance with a high power density and discharge–charge durability.