Knowledge Driven Machine Learning Towards Interpretable Intelligent Prognostics and Health Management: Review and Case Study

预言 计算机科学 人工智能 机器学习 工程类 数据挖掘
作者
Ruqiang Yan,Zheng Zhou,Zuogang Shang,Zhiying Wang,Chenye Hu,Yasong Li,Yuangui Yang,Xuefeng Chen,Robert X. Gao
出处
期刊:Chinese journal of mechanical engineering [Elsevier]
卷期号:38 (1)
标识
DOI:10.1186/s10033-024-01173-8
摘要

Abstract Despite significant progress in the Prognostics and Health Management (PHM) domain using pattern learning systems from data, machine learning (ML) still faces challenges related to limited generalization and weak interpretability. A promising approach to overcoming these challenges is to embed domain knowledge into the ML pipeline, enhancing the model with additional pattern information. In this paper, we review the latest developments in PHM, encapsulated under the concept of Knowledge Driven Machine Learning (KDML). We propose a hierarchical framework to define KDML in PHM, which includes scientific paradigms, knowledge sources, knowledge representations, and knowledge embedding methods. Using this framework, we examine current research to demonstrate how various forms of knowledge can be integrated into the ML pipeline and provide roadmap to specific usage. Furthermore, we present several case studies that illustrate specific implementations of KDML in the PHM domain, including inductive experience, physical model, and signal processing. We analyze the improvements in generalization capability and interpretability that KDML can achieve. Finally, we discuss the challenges, potential applications, and usage recommendations of KDML in PHM, with a particular focus on the critical need for interpretability to ensure trustworthy deployment of artificial intelligence in PHM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rita完成签到,获得积分10
2秒前
2秒前
amxl完成签到,获得积分10
2秒前
zzx发布了新的文献求助10
2秒前
汉堡包应助科研通管家采纳,获得30
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
Lucas应助carbon-dots采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
今天开心应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
3秒前
Andy_Cheung应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
4秒前
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
4秒前
Akim应助科研通管家采纳,获得10
4秒前
禾子应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
5秒前
5秒前
5秒前
月亮不会说话完成签到,获得积分10
5秒前
Cactus应助雪山飞龙采纳,获得10
5秒前
感动煎饼发布了新的文献求助10
6秒前
充电宝应助小波采纳,获得10
6秒前
czc发布了新的文献求助10
8秒前
8秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737954
求助须知:如何正确求助?哪些是违规求助? 3281511
关于积分的说明 10025689
捐赠科研通 2998263
什么是DOI,文献DOI怎么找? 1645165
邀请新用户注册赠送积分活动 782636
科研通“疑难数据库(出版商)”最低求助积分说明 749882