A multi-threshold image segmentation method based on arithmetic optimization algorithm: A real case with skin cancer dermoscopic images

人工智能 分割 图像分割 皮肤癌 数学 图像(数学) 计算机视觉 计算机科学 算法 模式识别(心理学) 癌症 医学 内科学
作者
Shuhui Hao,Changcheng Huang,Yi Chen,Mingjing Wang,Lei Liu,Suling Xu,Huiling Chen
出处
期刊:Journal of Computational Design and Engineering [Oxford University Press]
标识
DOI:10.1093/jcde/qwaf006
摘要

Abstract Multi-threshold image segmentation (MTIS) is a crucial technology in image processing, characterized by simplicity and efficiency, and the key lies in the selection of thresholds. However, the method's time complexity will grow exponentially with the number of thresholds. To solve this problem, an improved arithmetic optimization algorithm (ETAOA) is proposed in this paper, an optimizer for optimizing the process of merging appropriate thresholds. Specifically, two optimization strategies are introduced to optimize the optimal threshold process: elite evolutionary strategy (EES) and elite tracking strategy (ETS). First, to verify the optimization performance of ETAOA, mechanism comparison experiments, scalability tests, and comparison experiments with nine state-of-the-art peers are executed based on the benchmark functions of CEC2014 and CEC2022. After that, to demonstrate the feasibility of ETAOA in the segmentation domain, comparison experiments were performed using ten advanced segmentation methods based on skin cancer dermatoscopy image datasets under low and high thresholds, respectively. The above experimental results show that the proposed ETAOA performs outstanding optimization compared with benchmark functions. Moreover, the experimental results in the segmentation domain show that ETAOA has superior segmentation performance under low and high threshold conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助Young采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
念0发布了新的文献求助10
刚刚
嘿嘿应助一一采纳,获得10
1秒前
niagvbjkhsdfvc完成签到,获得积分10
1秒前
1秒前
hyishu完成签到,获得积分10
2秒前
LJY完成签到,获得积分10
2秒前
调皮芫完成签到,获得积分10
2秒前
Zn中毒完成签到,获得积分10
2秒前
彭于晏应助wweq采纳,获得10
2秒前
小张医生完成签到,获得积分10
2秒前
闲之野鹤完成签到,获得积分10
3秒前
liuHX完成签到,获得积分10
3秒前
4秒前
4秒前
Huang完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
qiqibaby发布了新的文献求助10
4秒前
czz完成签到,获得积分10
5秒前
5秒前
半农应助dtcao采纳,获得10
6秒前
Rico_完成签到,获得积分10
6秒前
6秒前
7秒前
豆豆给豆豆的求助进行了留言
7秒前
lp20094479发布了新的文献求助10
8秒前
慕青应助cccc采纳,获得10
8秒前
8秒前
8秒前
星辰大海应助wweq采纳,获得10
8秒前
qijie发布了新的文献求助10
8秒前
Charon完成签到,获得积分10
9秒前
独特秋双发布了新的文献求助10
9秒前
Allen发布了新的文献求助10
9秒前
陈AQ完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997