掺杂剂
材料科学
兴奋剂
阴极
锂(药物)
化学工程
氧气
离子
格子(音乐)
纳米技术
光电子学
物理化学
化学
内分泌学
声学
有机化学
工程类
物理
医学
作者
Tianhao Wu,Xu Zhang,Yuqiang Li,Haozhe Du,Tongchao Liu,Yubo Yang,Zihe Zhang,Xiaosong Liu,Q. Huang,Yang Ren,Jiangtao Qu,Shu Zhao,Boya Wang,Rongkun Zheng,Khalil Amine,Haijun Yu
标识
DOI:10.1002/adma.202408543
摘要
Abstract Elemental doping is widely used to improve the performance of cathode materials in lithium‐ion batteries. However, macroscopic/statistical investigation on how doping sites are distributed in the material lattice, despite being a key prerequisite for understanding and manipulating the doping effect, has not been effectively established. Herein, to solve this predicament, a universal strategy is proposed to quantitatively identify the locations of Al and Mg dopants in lithium‐rich layered oxides (LLOs). Solid evidence confirms that Al prefers to occupy the transition metal (TM) layer, while Mg evenly occupies both TM and Li layers. As a result, Mg significantly reduces the thickness of LiO 2 slabs at room temperature, which will increase the energy barrier of oxygen activation and enhance the structure stability of LLOs. The suppressed oxygen activity in Mg‐doped LLO can be kinetically unlocked at 55 °C. The different characteristics of Al and Mg enlighten an Al/Mg co‐doping strategy to optimize LLOs, which significantly improves the cycle performance while lifting the capacity. These insights from the quantitative identification of doping sites shed light on the manipulation of doping effects toward better cathodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI