Multimodal Transportation Pricing Alliance Design: Large-Scale Optimization for Rapid Gains

计算机科学 利润(经济学) 运筹学 规模经济 业务 微观经济学 经济 工程类
作者
Kayla Cummings,Vikrant Vaze,Özlem Ergün,Cynthia Barnhart
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.5023479
摘要

Transit agencies have the opportunity to outsource certain services to established Mobility-on-Demand (MOD) providers. Such alliances can improve service quality, coverage, and ridership; reduce public sector costs and vehicular emissions; and integrate the passenger experience. To amplify the effectiveness of such alliances, we develop a fare-setting model that jointly optimizes fares and discounts across a multimodal network. We capture commuters' travel decisions with a discrete choice model, resulting in a large-scale, mixed-integer, non-convex optimization problem. To solve this challenging problem, we develop a two-stage decomposition with the pricing decisions in the first stage and a mixed-integer linear optimization of fare discounts and passengers' travel decisions in the second stage. To solve the decomposition, we develop a new solution approach that combines customized coordinate descent, parsimonious second-stage evaluations, and interpolations using special ordered sets. This approach, enhanced by acceleration techniques based on slanted traversal, randomization, and warm-start, significantly outperforms algorithmic benchmarks. Different alliance priorities result in qualitatively different fare designs: flat fares decrease the total vehicle miles traveled, while geographically-informed discounts improve passenger happiness. The model responds appropriately to equity-oriented and passenger-centric priorities, improving system utilization and lowering prices for low-income and long-distance commuters. Our profit allocation mechanism improves the outcomes for both types of operators, thus incentivizing profit-oriented MOD operators to adopt transit priorities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aryac完成签到,获得积分10
1秒前
1秒前
科研通AI2S应助Ma采纳,获得10
1秒前
遲悟篤行完成签到,获得积分10
2秒前
尹雪儿完成签到,获得积分10
2秒前
充电宝应助qq采纳,获得10
3秒前
AhhHuang应助容若采纳,获得10
4秒前
4秒前
科目三应助炙热的平灵采纳,获得10
4秒前
liuanqi发布了新的文献求助10
4秒前
5秒前
5秒前
科研通AI6应助文乐采纳,获得10
5秒前
安安安完成签到,获得积分10
6秒前
6秒前
Unicorn发布了新的文献求助10
6秒前
斯文败类应助清浅采纳,获得30
6秒前
6秒前
小二郎应助yyj采纳,获得10
7秒前
Aryac发布了新的文献求助10
7秒前
7秒前
8秒前
Pothos应助YAN采纳,获得30
9秒前
gzhoax应助山山而川采纳,获得30
9秒前
科研通AI6应助liam采纳,获得10
9秒前
烟里戏发布了新的文献求助10
9秒前
沙糖桔完成签到,获得积分10
9秒前
10秒前
Sunday给Sunday的求助进行了留言
10秒前
10秒前
ppy发布了新的文献求助10
10秒前
Chris发布了新的文献求助30
10秒前
嬴炎发布了新的文献求助10
10秒前
成就雨筠完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
崔大冠发布了新的文献求助10
11秒前
11秒前
12秒前
晚阳完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667262
求助须知:如何正确求助?哪些是违规求助? 4884975
关于积分的说明 15119469
捐赠科研通 4826112
什么是DOI,文献DOI怎么找? 2583765
邀请新用户注册赠送积分活动 1537901
关于科研通互助平台的介绍 1496041