Abstract 4137169: Artificial Intelligence-Enabled Electrocardiography For The Prediction of Future Type 2 Diabetes Mellitus

医学 心电图 糖尿病 心脏病学 内科学 2型糖尿病 内分泌学
作者
Libor Pastika,Konstantinos Patlatzoglou,Ewa Sieliwończyk,Joseph Barker,Boroumand Zeidaabadi,Kathryn A. McGurk,Sadia Khan,Danilo P. Mandic,James S. Ware,Nicholas S. Peters,Daniel B. Kramer,Jonathan W. Waks,Arunashis Sau,Fu Siong Ng
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:150 (Suppl_1)
标识
DOI:10.1161/circ.150.suppl_1.4137169
摘要

Background: Undiagnosed diabetes and prediabetes present a significant global health challenge. Artificial Intelligence-enabled electrocardiography (AI-ECG) has shown promise in identifying subtle ECG changes in a wide range of subclinical diseases. Opportunistic ECG screening could identify prediabetic patients, enabling early interventions to prevent T2DM and adverse cardiovascular events. Aims: To develop the AI-ECG Risk Estimator to diagnose prevalent T2DM and predict future T2DM (AIRE-DM) Methods: AIRE-DM was trained on a real-world secondary care cohort from Beth Israel Deaconess Medical Center (BIDMC) of 1,163,401 ECGs and externally validated in the UK Biobank (UKB, N = 65,606). AIRE-DM employs a residual neural network architecture with a discrete-time survival loss function. Results: AIRE-DM accurately identifies prevalent T2DM (AUROC: BIDMC – 0.712 (0.705-0.719), UKB - 0.731 (0.725 - 0.741) and predicts future T2DM (C-index: BIDMC - 0.666 (0.658-0.675), UKB 0.689 (0.663-0.715). In subjects without T2DM, the high-risk quartile shows a markedly increased risk of future T2DM (HR: BIDMC - 4.67 (4.01-5.45), UKB - 10.10 (5.87-17.40), adjusted for age and sex. Adding AIRE-DM to clinical risk factors in BIDMC and to the American Diabetes Association (ADA) score in the UKB significantly enhanced predictive accuracy for future T2DM (C-index improvement: BIDMC - 0.0359 (0.0354-0.0363), UKB: 0.0337 (0.0324-0.0350), continuous net reclassification index: BIDMC - 0.407 (0.360-0.445), UKB - 0.391 (0.259-0.503)). Using phenome- and genome-wide association studies, we identified biologically plausible associations for AIRE-DM, including glucose regulation, cardiac morphology, diastolic dysfunction, arterial stiffness and lipid metabolism. We identified variants adjacent to CASQ2 , TBX3 , NOS1AP , TKT , VGLL2 and PRDM6 , which are known regulators of cardiac morphology, arterial stiffness and glucose metabolism. Conclusion: AIRE-DM can predict future T2DM in non-diabetics and enhances T2DM risk prediction when integrated with clinical risk scores. Its application holds promise for early identification of individuals at high risk of T2DM, enabling early lifestyle and pharmacological interventions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
ZHANGHUI发布了新的文献求助10
4秒前
端庄的访枫完成签到 ,获得积分10
4秒前
科研通AI2S应助现代的烤鸡采纳,获得10
5秒前
武雨寒发布了新的文献求助10
5秒前
6秒前
NexusExplorer应助ydfqlzj采纳,获得10
6秒前
学呀学发布了新的文献求助10
7秒前
白芷发布了新的文献求助10
9秒前
11秒前
耿耿完成签到,获得积分10
12秒前
14秒前
14秒前
16秒前
文安完成签到,获得积分10
16秒前
18秒前
和谐的孱发布了新的文献求助10
19秒前
白芷完成签到,获得积分10
19秒前
瘦瘦小萱发布了新的文献求助10
19秒前
共享精神应助漂亮钢铁侠采纳,获得10
19秒前
温柔孤兰发布了新的文献求助10
20秒前
newman完成签到,获得积分10
21秒前
ffff发布了新的文献求助10
21秒前
21秒前
温暖的萤发布了新的文献求助20
22秒前
Cecilia应助追寻锦程采纳,获得10
24秒前
田様应助李嘉图采纳,获得10
24秒前
今天要学习完成签到 ,获得积分10
25秒前
杨旭完成签到 ,获得积分10
27秒前
和谐的孱完成签到,获得积分10
28秒前
善学以致用应助瘦瘦小萱采纳,获得10
29秒前
30秒前
30秒前
香蕉觅云应助YK采纳,获得10
31秒前
某某发布了新的文献求助10
32秒前
33秒前
瘦瘦小萱完成签到,获得积分10
34秒前
咕咕咕完成签到,获得积分10
36秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3254201
求助须知:如何正确求助?哪些是违规求助? 2896520
关于积分的说明 8292993
捐赠科研通 2565415
什么是DOI,文献DOI怎么找? 1393024
科研通“疑难数据库(出版商)”最低求助积分说明 652418
邀请新用户注册赠送积分活动 629880